【題目】在研究反比例函數(shù)的圖象與性質(zhì)時(shí),我們對(duì)函數(shù)解析式進(jìn)行了深入分析.
首先,確定自變量的取值范圍是全體非零實(shí)數(shù),因此函數(shù)圖象會(huì)被軸分成兩部分;其次,分析解析式,得到隨的變化趨勢(shì):當(dāng)時(shí),隨著值的增大,的值減小,且逐漸接近于零,隨著值的減小,的值會(huì)越來(lái)越大…,由此,可以大致畫出在時(shí)的部分圖象,如圖所示:
利用同樣的方法,我們可以研究函數(shù)的圖象與性質(zhì).通過(guò)分析解析式畫出部分函數(shù)圖象如圖所示.
(1)請(qǐng)沿此思路在圖中完善函數(shù)圖象的草圖并標(biāo)出此函數(shù)圖象上橫坐標(biāo)為0的點(diǎn);(畫出網(wǎng)格區(qū)域內(nèi)的部分即可)
(2)觀察圖象,寫出該函數(shù)的一條性質(zhì):__________;
(3)若關(guān)于的方程有兩個(gè)不相等的實(shí)數(shù)根,結(jié)合圖象,直接寫出實(shí)數(shù)的取值范圍: __________.
【答案】(1)見(jiàn)解析;(2)當(dāng)時(shí),隨增大而減小;(3)
【解析】
(1)先得出函數(shù)自變量的取值范圍,再分析解析式,得到隨的變化趨勢(shì),由此完善函數(shù)圖象即可;令求出y的值即可得出點(diǎn)A坐標(biāo);
(2)根據(jù)函數(shù)圖象得出其增減性即可;
(3)將所求問(wèn)題看成函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題,先找出一個(gè)臨界位置,再根據(jù)一次函數(shù)的性質(zhì)即可得.
(1)由二次根式的被開(kāi)方數(shù)的非負(fù)性、分式的分母不能為0得:
解得:且
令得
則點(diǎn)A坐標(biāo)為
分析解析式,得到隨的變化趨勢(shì):當(dāng)時(shí),隨著值的增大,的值會(huì)越來(lái)越;當(dāng)時(shí),隨著值的增大,的值會(huì)減小,且逐漸接近于零,由此,完善函數(shù)圖象如圖所示:
(2)由(1)圖象可知,當(dāng)時(shí),隨增大而減。唬ㄗⅲ捍鸢覆晃ㄒ唬
(3)由題意得,函數(shù)與一次函數(shù)有兩個(gè)交點(diǎn)
一次函數(shù)的圖象經(jīng)過(guò)定點(diǎn)
要使兩個(gè)函數(shù)有兩個(gè)交點(diǎn),一次函數(shù)經(jīng)過(guò)點(diǎn)是一個(gè)臨界位置,此時(shí)有,即
因此,結(jié)合函數(shù)圖象可知,當(dāng)時(shí),兩個(gè)函數(shù)必有兩個(gè)交點(diǎn),即關(guān)于的方程有兩個(gè)不相等的實(shí)數(shù)根
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,過(guò)點(diǎn)A作AE⊥BC,垂足為E,連接DE,F為線段DE上一點(diǎn),且∠AFE=∠B
(1)求證:△ADF∽△DEC;
(2)若AB=8,AD=6,AF=4,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,過(guò)圓外一點(diǎn)E作EF與⊙O相切于G,交AB的延長(zhǎng)線于F,EC⊥AB于H,交⊙O于D,C兩點(diǎn),連接AG交DC于K.
(1)求證:EG=EK;
(2)連接AC,若AC∥EF,cosC=,AK=,求BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB為直徑,∠BAC的平分線交⊙O于點(diǎn)D,過(guò)點(diǎn)D作DE⊥AC分別交AC的延長(zhǎng)線于點(diǎn)E,交AB的延長(zhǎng)線于點(diǎn)F.
(1)求證:EF是⊙O的切線;
(2)若AC=8,CE=4,求弧BD的長(zhǎng).(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是娜娜設(shè)計(jì)的“作一個(gè)角等于已知角”的尺規(guī)作圖過(guò)程.
已知:RT△ABC,
求作:AB上作點(diǎn)D,使∠BCD=∠A.
作法:如圖,以AC為直徑作圓,交AB于D,所以點(diǎn)D就是所求作的點(diǎn);
根據(jù)娜娜設(shè)計(jì)的作圖過(guò)程,完成下面的證明.
證明:∵AC是直徑
∴∠ADC=90°(______)(填推理的依據(jù))
即∠ACD+∠A=90°,
∵∠ACB=90°,
即∠ACD+_______=90°,
∴∠BCD=∠A(_______)(填推理的依據(jù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,,射線和互相垂直,點(diǎn)是上的一個(gè)動(dòng)點(diǎn),點(diǎn)在射線上,,作并截取,連結(jié)并延長(zhǎng)交射線于點(diǎn).設(shè),則關(guān)于的函數(shù)解析式是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分8分)某商家預(yù)測(cè)一種應(yīng)季襯衫能暢銷市場(chǎng),就用13200元購(gòu)進(jìn)了一批這種襯衫,面市后果然供不應(yīng)求.商家又用28800元購(gòu)進(jìn)了第二批這種襯衫,所購(gòu)數(shù)量是第一批購(gòu)進(jìn)量的2倍,但單價(jià)貴了10元.
(1)該商家購(gòu)進(jìn)的第一批襯衫是多少件?
(2)若兩批襯衫按相同的標(biāo)價(jià)銷售,最后剩下50件按八折優(yōu)惠賣出,如果兩批襯衫全部售完后利潤(rùn)率不低于25%(不考慮其它因素),那么每件襯衫的標(biāo)價(jià)至少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】鄂爾多斯市某百貨商場(chǎng)銷售某一熱銷商品A,其進(jìn)貨和銷售情況如下:用16000元購(gòu)進(jìn)一批該熱銷商品A,上市后很快銷售一空,根據(jù)市場(chǎng)需求情況,該商場(chǎng)又用7500元購(gòu)進(jìn)第二批該商品,已知第二批所購(gòu)件數(shù)是第一批所購(gòu)件數(shù)的一半,且每件商品的進(jìn)價(jià)比第一批的進(jìn)價(jià)少10元.
(1)求商場(chǎng)第二批商品A的進(jìn)價(jià);
(2)商場(chǎng)同時(shí)銷售另一種熱銷商品B,已知商品B的進(jìn)價(jià)與第二批商品A的進(jìn)價(jià)相同,且最初銷售價(jià)為165元,每天能賣出125件,經(jīng)市場(chǎng)銷售發(fā)現(xiàn),若售價(jià)每上漲1元,其每天銷售量就減少5件,問(wèn)商場(chǎng)該如何定售價(jià),每天才能獲得最大利潤(rùn)?并求出每天的最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 為滿足社區(qū)居民健身的需要,市政府準(zhǔn)備采購(gòu)若干套健身器材免費(fèi)提供給社區(qū),經(jīng)考察,勁松公司有兩種型號(hào)的健身器可供選擇.
(1)勁松公司2015年每套型健身器的售價(jià)為萬(wàn)元,經(jīng)過(guò)連續(xù)兩年降價(jià),2017年每套售價(jià)為 萬(wàn)元,求每套型健身器年平均下降率 ;
(2)2017年市政府經(jīng)過(guò)招標(biāo),決定年內(nèi)采購(gòu)并安裝勁松公司兩種型號(hào)的健身器材共套,采購(gòu)專項(xiàng)費(fèi)總計(jì)不超過(guò)萬(wàn)元,采購(gòu)合同規(guī)定:每套型健身器售價(jià)為萬(wàn)元,每套型健身器售價(jià)我 萬(wàn)元.
①型健身器最多可購(gòu)買多少套?
②安裝完成后,若每套型和型健身器一年的養(yǎng)護(hù)費(fèi)分別是購(gòu)買價(jià)的 和 .市政府計(jì)劃支出 萬(wàn)元進(jìn)行養(yǎng)護(hù).問(wèn)該計(jì)劃支出能否滿足一年的養(yǎng)護(hù)需要?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com