【題目】如圖所示,在平面直角坐標(biāo)系中,過(guò)點(diǎn)A(﹣,0)的兩條直線分別交y軸于B、C兩點(diǎn),且B、C兩點(diǎn)的縱坐標(biāo)分別是一元二次方程x2﹣2x﹣3=0的兩個(gè)根
(1)求線段BC的長(zhǎng)度;
(2)試問(wèn):直線AC與直線AB是否垂直?請(qǐng)說(shuō)明理由;
(3)若點(diǎn)D在直線AC上,且DB=DC,求點(diǎn)D的坐標(biāo);
(4)在(3)的條件下,直線BD上是否存在點(diǎn)P,使以A、B、P三點(diǎn)為頂點(diǎn)的三角形是等腰三角形?若存在,請(qǐng)直接寫(xiě)出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)4;(2)AC⊥AB,理由見(jiàn)解析;(3)D(﹣2,1);(4)點(diǎn)P的坐標(biāo)為(﹣3,0),(﹣,2),(﹣3,3﹣),(3,3+).
【解析】
試題分析:(1)解出方程后,即可求出B、C兩點(diǎn)的坐標(biāo),即可求出BC的長(zhǎng)度;(2)由A、B、C三點(diǎn)坐標(biāo)可知OA2=OCOB,所以可證明△AOC∽△BOA,利用對(duì)應(yīng)角相等即可求出∠CAB=90°;(3)容易求得直線AC的解析式,由DB=DC可知,點(diǎn)D在BC的垂直平分線上,所以D的縱坐標(biāo)為1,將其代入直線AC的解析式即可求出D的坐標(biāo);(4)A、B、P三點(diǎn)為頂點(diǎn)的三角形是等腰三角形,可分為以下三種情況:①AB=AP;②AB=BP;③AP=BP;然后分別求出P的坐標(biāo)即可.
試題解析:(1)∵x2﹣2x﹣3=0,
∴x=3或x=﹣1,
∴B(0,3),C(0,﹣1),
∴BC=4;
(2)∵A(﹣,0),B(0,3),C(0,﹣1),
∴OA=,OB=3,OC=1,
∴OA2=OBOC,
∵∠AOC=∠BOA=90°,
∴△AOC∽△BOA,
∴∠CAO=∠ABO,
∴∠CAO+∠BAO=∠ABO+∠BAO=90°,
∴∠BAC=90°,
∴AC⊥AB;
(3)設(shè)直線AC的解析式為y=kx+b,
把A(﹣,0)和C(0,﹣1)代入y=kx+b,
∴,
解得:,
∴直線AC的解析式為:y=﹣x﹣1,
∵DB=DC,
∴點(diǎn)D在線段BC的垂直平分線上,
∴D的縱坐標(biāo)為1,
∴把y=1代入y=﹣x﹣1,
∴x=﹣2,
∴D的坐標(biāo)為(﹣2,1),
(4)設(shè)直線BD的解析式為:y=mx+n,直線BD與x軸交于點(diǎn)E,
把B(0,3)和D(﹣2,1)代入y=mx+n,
∴,
解得,
∴直線BD的解析式為:y=x+3,
令y=0代入y=x+3,
∴x=﹣3,
∴E(﹣3,0),
∴OE=3,
∴tan∠BEC==,
∴∠BEO=30°,
同理可求得:∠ABO=30°,
∴∠ABE=30°,
當(dāng)PA=AB時(shí),如圖1,
此時(shí),∠BEA=∠ABE=30°,
∴EA=AB,
∴P與E重合,
∴P的坐標(biāo)為(﹣3,0),
當(dāng)PA=PB時(shí),如圖2,
此時(shí),∠PAB=∠PBA=30°,
∵∠ABE=∠ABO=30°,
∴∠PAB=∠ABO,
∴PA∥BC,
∴∠PAO=90°,
∴點(diǎn)P的橫坐標(biāo)為﹣,
令x=﹣代入y=x+3,
∴y=2,
∴P(﹣,2),
當(dāng)PB=AB時(shí),如圖3,
∴由勾股定理可求得:AB=2,EB=6,
若點(diǎn)P在y軸左側(cè)時(shí),記此時(shí)點(diǎn)P為P1,
過(guò)點(diǎn)P1作P1F⊥x軸于點(diǎn)F,
∴P1B=AB=2,
∴EP1=6﹣2,
∴sin∠BEO=,
∴FP1=3﹣,
令y=3﹣代入y=x+3,
∴x=﹣3,
∴P1(﹣3,3﹣),
若點(diǎn)P在y軸的右側(cè)時(shí),記此時(shí)點(diǎn)P為P2,
過(guò)點(diǎn)P2作P2G⊥x軸于點(diǎn)G,
∴P2B=AB=2,
∴EP2=6+2,
∴sin∠BEO=,
∴GP2=3+,
令y=3+代入y=x+3,
∴x=3,
∴P2(3,3+),
綜上所述,當(dāng)A、B、P三點(diǎn)為頂點(diǎn)的三角形是等腰三角形時(shí),點(diǎn)P的坐標(biāo)為(﹣3,0),(﹣,2),(﹣3,3﹣),(3,3+).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】增城區(qū)城市副中心核心區(qū)規(guī)劃面積是64000000平方米,將64000000用科學(xué)記數(shù)法表示為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果一個(gè)數(shù)的絕對(duì)值等于這個(gè)數(shù)的相反數(shù),那么這個(gè)數(shù)一定是( )
A. 正數(shù) B. 負(fù)數(shù) C. 非正數(shù) D. 非負(fù)數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】從上面看圓柱和從上面看圓錐,其形狀是一樣的,都是圓,但是它們的俯視圖是有區(qū)別的,其區(qū)別是________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面的材料:點(diǎn)A、B在數(shù)軸上分別表示實(shí)數(shù)a,b,A,B兩點(diǎn)之間的距離表示為|AB|.當(dāng)A、B兩點(diǎn)中有一點(diǎn)在原點(diǎn)時(shí),設(shè)點(diǎn)A在原點(diǎn),如圖①|(zhì)AB|=|OB|=|b|=|a-b|.
當(dāng)A、B兩點(diǎn)都不在原點(diǎn)時(shí),(1)如圖②,點(diǎn)A,B都在原點(diǎn)的右邊,|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|(2)如圖③,點(diǎn)A、B都在原點(diǎn)的左邊,|AB|=|OB|-|OA|=|b|-|a|= -b-(-a)=|a-b|(3)如圖④,點(diǎn)A、B在原點(diǎn)的兩邊,|AB|=|OA|+|OB|=|a|+|b|=a+(-b)=|a-b|.綜上所述,數(shù)軸上A、B兩點(diǎn)之間的距離|AB|=|a-b|請(qǐng)用上面的知識(shí)解答下面的問(wèn)題:
(1)數(shù)軸上表示1和5的兩點(diǎn)之間的距離是______,數(shù)軸上表示-2和-4的兩點(diǎn)之間的距離是______,數(shù)軸上表示1和-3的兩點(diǎn)之間的距離是______.
(2)數(shù)軸上表示x和-1的兩點(diǎn)A和B之間的距離是______,如果|AB|=2,那么x為_(kāi)_____.
(3)當(dāng)|x+1|+|x-2|取最小值時(shí),相應(yīng)的x的取值范圍是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC,點(diǎn)D是BC上一點(diǎn)(不與B,C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE=∠BAC,連接CE.
(1)如圖1,若∠BAC=90°,
①求證;△ABD≌△ACE;②求∠BCE的度數(shù).
(2)設(shè)∠BAC=α,∠BCE=β.如圖2,則α,β之間有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫(xiě)出你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】體育課上,對(duì)七年級(jí)1班的男生進(jìn)行了100米測(cè)試,達(dá)標(biāo)成績(jī)?yōu)?5秒,下表是某小組8名男生的成績(jī)測(cè)試記錄,其中“+“表示成績(jī)大于15秒.
-0.8 | +1 | -1.2 | 0 | -0.7 | +0.6 | -0.4 | -0.1 |
問(wèn):(1)這個(gè)小組男生的達(dá)標(biāo)率為多少?
(2)這個(gè)小組男生的平均成績(jī)是多少秒?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)容量為50的樣本,在整理頻率分布時(shí),將所有頻率相加,其和是( )
A. 50 B. 0.02 C. 0.1 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正比例函數(shù)y=kx(k是常數(shù),k≠0),y隨x的增大而減小,寫(xiě)出一個(gè)符合條件的k的值為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com