【題目】“龜兔首次賽跑”之后,輸了比賽的兔子沒有氣餒,總結(jié)反思后,和烏龜約定再賽一場.圖中的函數(shù)圖象刻畫了“龜兔再次賽跑”的故事(x表示烏龜從起點出發(fā)所行的時間,y1表示烏龜所行的路程,y2表示兔子所行的路程).有下列說法:
①“龜兔再次賽跑”的路程為1000米;
②兔子和烏龜同時從起點出發(fā);
③烏龜在途中休息了10分鐘;
④兔子在途中750米處追上烏龜.
其中正確的說法是 . (把你認(rèn)為正確說法的序號都填上)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】重慶是一座美麗的山坡,某中學(xué)依山而建,校門A處,有一斜坡AB,長度為13米,在坡頂B處看教學(xué)樓CF的樓頂C的仰角∠CBF=53°,離B點4米遠(yuǎn)的E處有一花臺,在E處仰望C的仰角∠CEF=63.4°,CF的延長線交校門處的水平面于D點,F(xiàn)D=5米.
(1)求斜坡AB的坡度i;(2)求DC的長.(參考數(shù)據(jù):tan53°≈,tan63.4°≈2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正△ABC的邊長為2,以BC邊上的高AB1為邊作正△AB1C1 , △ABC與△AB1C1公共部分的面積記為S1;再以正△AB1C1邊B1C1上的高AB2為邊作正△AB2C2 , △AB1C1與△AB2C2公共部分的面積記為S2;…,以此類推,則Sn= . (用含n的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=x2+mx+m﹣2.
(1)求證:無論m取何值,拋物線總與x軸有兩個交點;
(2)當(dāng)m=2時,求方程x2+mx+m﹣2=0的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景:
小紅同學(xué)在學(xué)習(xí)過程中遇到這樣一道計算題“計算4×3.142﹣4×3.14×3.28+3.282”,他覺得太麻煩,估計應(yīng)該有可以簡化計算的方法,就去請教崔老師.崔老師說:你完成下面的問題后就可能知道該如何簡化計算啦!
獲取新知:
請你和小紅一起完成崔老師提供的問題:
(1)填寫下表:
x=﹣1,y=1 | x=1,y=0 | x=3,y=2 | x=1,y=1 | x=5,y=3 | |
A=2x﹣y | ﹣3 | 2 | 4 | 1 | 7 |
B=4x2﹣4xy+y2 | 9 | 4 |
|
|
|
(2)觀察表格,你發(fā)現(xiàn)A與B有什么關(guān)系?
解決問題:
(3)請結(jié)合上述的有關(guān)信息,計算4×3.142﹣4×3.14×3.28+3.282.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某大酒店客房部有三人間、雙人間和單人間客房,收費數(shù)據(jù)如下表(例如三人間普通間客房每人每天收費50元).為吸引客源,在“十一黃金周”期間進(jìn)行優(yōu)惠大酬賓,凡團(tuán)體入住一律五折優(yōu)惠.一個50人的旅游團(tuán)在十月二號到該酒店住宿,租住了一些三人間、雙人間普通客房,并且每個客房正好住滿,一天一共花去住宿費1510元.
普通間(元/人/天) | 豪華間(元/人/天) | 貴賓間(元/人/天) | |
三人間 | 50 | 100 | 500 |
雙人間 | 70 | 150 | 800 |
單人間 | 100 | 200 | 1500 |
(1)三人間、雙人間普通客房各住了多少間?
(2)設(shè)三人間共住了x人,則雙人間住了人,一天一共花去住宿費用y元表示,寫出y與x的函數(shù)關(guān)系式;
(3)如果你作為旅游團(tuán)團(tuán)長,你認(rèn)為上面這種住宿方式是不是費用最少?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角墻角AOB(OA⊥OB,且OA、OB長度不限)中,要砌20m長的墻,與直角墻角AOB圍成地面為矩形的儲倉,且地面矩形AOBC的面積為96m2.
(1)求地面矩形AOBC的長;
(2)有規(guī)格為0.80×0.80和1.00×1.00(單位:m)的地板磚單價分別為55元/塊和80元/塊,若只選其中一種地板磚都恰好能鋪滿儲倉的矩形地面(不計縫隙),用哪一種規(guī)格的地板磚費用較少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:點A在射線CE上,∠C=∠D.
(1)如圖1,若AC∥BD,求證:AD∥BC;
(2)如圖2,若∠BAC=∠BAD,BD⊥BC,請?zhí)骄?/span>∠DAE與∠C的數(shù)量關(guān)系,寫出你的探究結(jié)論,并加以證明;
(3)如圖3,在(2)的條件下,過點D作DF∥BC交射線于點F,當(dāng)∠DFE=8∠DAE時,求∠BAD的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com