【題目】如圖,等邊三角形ABC中,,點D在直線BC上,點E在直線AC上,且,當時,則AE的長為______

【答案】24

【解析】

分四種情形分別畫出圖形,利用全等三角形或相似三角形的性質解決問題即可

解:分四種情形:

如圖1中,當點D在邊BC上,點E在邊AC上時.

是等邊三角形,

,

,

,

如圖2中,當點D在邊BC上,點EAC的延長線上時BC的延長線于F

,,

是等邊三角形,設

,

,

,

如圖3中,當點DCB的延長線上,點EAC的延長線上時.

,

,

,

如圖4中,當點DCB的延長線上,點E在邊AC上時BCF,則是等邊三角形.

,

,可得,

綜上所述,滿足條件的AE的值為24

故答案為24

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,四邊形是正方形, 延長線上一點.直角三角尺的一條直角邊經(jīng)過點,且直角頂點邊上滑動(不與點重合),另一直角邊與的平分線相交于點

(1)求證: ;

(2)如圖(1),當點邊的中點位置時,猜想的數(shù)量關系,并證明你的猜想;

(3)如圖(2),當點(除兩端點)上的任意位置時,猜想此時有怎樣的數(shù)量關系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】科幻小說《實驗室的故事》中,有這樣一個情節(jié),科學家把一種珍奇的植物分別放在不同溫度的環(huán)境中,經(jīng)過一段時間后,記錄下這種植物高度的增長情況(如下表):

溫度x/

﹣4

﹣2

0

2

4

6

植物每天高度的增長量y/mm

41

49

49

41

25

1

由這些數(shù)據(jù),科學家推測出植物每天高度的增長量y是溫度x的二次函數(shù),那么下列三個結論:

①該植物在0℃時,每天高度的增長量最大;

②該植物在﹣6℃時,每天高度的增長量能保持在25mm左右;

③該植物與大多數(shù)植物不同,6℃以上的環(huán)境下高度幾乎不增長.

上述結論中,所有正確結論的序號是

A. ①②③ B. ①③ C. ①② D. ②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】山西特產(chǎn)專賣店銷售核桃,其進價為每千克40元,按每千克60元出售,平均每天可售出100千克,后來經(jīng)過市場調查發(fā)現(xiàn),單價每降低2元,則平均每天的銷售可增加20千克,若該專賣店銷售這種核桃要想平均每天獲利2240元,請回答:

1每千克核桃應降價多少元?

21問的條件下,平均每天獲利不變,為盡可能讓利于顧客,贏得市場,該店應按原售價的幾折出售?

3寫出每天總利潤與降價元的函數(shù)關系式,為了使每天的利潤最大,應降價多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知矩形的邊長.某一時刻,動點點出發(fā)沿方向以的速度向點勻速運動;同時,動點點出發(fā)沿方向以的速度向點勻速運動,問:

(1)經(jīng)過多少時間,的面積等于矩形面積的?

(2)是否存在時刻t,使以A,M,N為頂點的三角形與相似?若存在,求t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】校園空地上有一面墻,長度為20m,用長為32m的籬笆和這面墻圍成一個矩形花圃,如圖所示.

(1)能圍成面積是126m2的矩形花圃嗎?若能,請舉例說明;若不能,請說明理由.

(2)若籬笆再增加4m,圍成的矩形花圃面積能達到170m2嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)分解因式  (直接寫出結果);若是整數(shù),則一定能被一個常數(shù)整除,這個常數(shù)的最大值是  

2)閱讀,并解決問題:

分解因式

解:設,則原式

這樣的解題方法叫做“換元法”,即當復雜的多項式中,某一部分重復出現(xiàn)時,我們用字母將其替換,從而簡化這個多項式.換元法是一個重要的數(shù)學方法,不少問題能用換元法解決.請你用“換元法”對下列多項式進行因式分解:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個不等實根

(1)求實數(shù)k的取值范圍.

(2)若方程兩實根滿足|x1|+|x2|=x1·x2,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某農場要建一個飼養(yǎng)場(長方形ABCD),飼養(yǎng)場的一面靠墻(墻最大可用長度為27米),另三邊用木欄圍成,中間也用木欄隔開,分成兩個場地,并在如圖所示的三處各留1米寬的門(不用木欄),建成后木欄總長57米,設飼養(yǎng)場(長方形ABCD)的寬為a米.

(1)飼養(yǎng)場的長為多少米(用含a的代數(shù)式表示).

(2)若飼養(yǎng)場的面積為288m2,求a的值.

(3)當a為何值時,飼養(yǎng)場的面積最大,此時飼養(yǎng)場達到的最大面積為多少平方米?

查看答案和解析>>

同步練習冊答案