【題目】如圖,在△ABC中,AB=6,AC=8,D是AB的中點(diǎn).若在AC上存在一點(diǎn)E,使得△ADE與原三角形相似.
(1)確定E的位置,并畫出簡(jiǎn)圖:
(2)求AE的長(zhǎng).
【答案】(1)畫出簡(jiǎn)圖見解析;(2)AE的長(zhǎng)為4或.
【解析】
(1)分別從△ADE∽△ABC與△ADE∽△ACB去求解,即可畫出圖形;
(2)分別從當(dāng)時(shí),△ADE∽△ABC與當(dāng)時(shí),△ADE∽△ACB去分析求解即可求得答案.
畫出簡(jiǎn)圖如圖所示:
當(dāng)DE1∥BC時(shí),△ADE∽△ABC
當(dāng)∠ADE2=∠C時(shí),△ADE∽△ACB
(2)∵D是AB的中點(diǎn),AB=6,
∴AD=3,
∵∠A是公共角,
∴當(dāng)時(shí),△ADE∽△ABC,
∴,
解得:AE1=4;
∴當(dāng)時(shí),△ADE∽△ACB,
∴,
解得AE2=,
∴AE的長(zhǎng)為4或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小李的住房結(jié)構(gòu)如圖所示。(單位:米)
(1)小李打算把臥室和客廳鋪上木地板,請(qǐng)你幫他算一算,他至少需要買多少平方米的木地板?
(2)當(dāng)x=6,y=3時(shí),小李住房的總面積是多少平方米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)均為1,線段AB的兩個(gè)端點(diǎn)在小正方形的頂點(diǎn)上.
(1)在圖1中畫一個(gè)以AB為邊的平行四邊形ABCD,點(diǎn)C、D在小正方形的頂點(diǎn)上,且平行四邊形ABCD的面積為15.
(2)在圖2中畫一個(gè)以AB為邊的菱形ABEF(不是正方形),點(diǎn)E、F在小正方形的頂點(diǎn)上,請(qǐng)直接寫出菱形ABEF的面積;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)今“微信運(yùn)動(dòng)”被越來越多的人關(guān)注和喜愛,某興趣小組隨機(jī)調(diào)查了我市50名教師某日“微信運(yùn)動(dòng)”中的步數(shù)情況進(jìn)行統(tǒng)計(jì)整理,繪制了如下的統(tǒng)計(jì)圖表(不完整):
步數(shù) | 頻數(shù) | 頻率 |
0≤x<4000 | 8 | a |
4000≤x<8000 | 15 | 0.3 |
8000≤x<12000 | 12 | b |
12000≤x<16000 | c | 0.2 |
16000≤x<20000 | 3 | 0.06 |
20000≤x<24000 | d | 0.04 |
請(qǐng)根據(jù)以上信息,解答下列問題:
(1)寫出a,b,c,d的值并補(bǔ)全頻數(shù)分布直方圖;
(2)本市約有37800名教師,用調(diào)查的樣本數(shù)據(jù)估計(jì)日行走步數(shù)超過12000步(包含12000步)的教師有多少名?
(3)若在50名被調(diào)查的教師中,選取日行走步數(shù)超過16000步(包含16000步的兩名教師與大家分享心得,求被選取的兩名教師恰好都在20000步(包含20000步)以上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,A、B為x軸上兩點(diǎn),C、D為y軸上的兩點(diǎn),經(jīng)過點(diǎn)A、C、B的拋物線的一部分c1與經(jīng)過點(diǎn)A、D、B的拋物線的一部分c2組合成一條封閉曲線,我們把這條封閉曲線成為“蛋線”.已知點(diǎn)C的坐標(biāo)為(0,﹣ ),點(diǎn)M是拋物線C2:y=mx2﹣2mx﹣3m(m<0)的頂點(diǎn).
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)“蛋線”在第四象限上是否存在一點(diǎn)P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請(qǐng)說明理由;
(3)當(dāng)△BDM為直角三角形時(shí),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長(zhǎng)為4,⊙B的半徑為2,點(diǎn)P是⊙B上的一個(gè)動(dòng)點(diǎn),則PD﹣PC的最大值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我校初三某班 50 名學(xué)生需要參加體育“五選一”自選項(xiàng)目測(cè)試,班上學(xué)生所報(bào)自選項(xiàng)目的情況統(tǒng)計(jì)表如表所示:
自選項(xiàng)目 | 人數(shù) | 頻率 |
立定跳遠(yuǎn) | 9 | 0.18 |
三級(jí)蛙跳 | 12 | a |
一分鐘跳繩 | 8 | 0.16 |
投擲實(shí)心球 | b | 0.32 |
推鉛球 | 5 | 0.10 |
合計(jì) | 50 | 1 |
(1)填空:a= ,b= ;
(2)若將各自選項(xiàng)目的人數(shù)所占比例繪制成扇形統(tǒng)計(jì)圖,求“立定跳遠(yuǎn)”對(duì)應(yīng)扇形的圓心角的度數(shù);
(3)在選報(bào)“推鉛球”的學(xué)生中,有 3 名男生、2 名女生,為了了解學(xué)生的訓(xùn)練效果,從這 5 名學(xué)生中隨機(jī)抽取兩名學(xué)生進(jìn)行推鉛球測(cè)試,請(qǐng)用列表法或樹形圖法求所抽取的兩名學(xué)生中至多有一名男生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,∠A=30°,點(diǎn)D是AB的中點(diǎn),DE⊥BC,垂足為點(diǎn)E,連接CD.
(1)如圖1,DE與BC的數(shù)量關(guān)系是 ;
(2)如圖2,若P是線段CB上一動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B、C重合),連接DP,將線段DP繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)60°,得到線段DF,連接BF,請(qǐng)猜想DE、BF、BP三者之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)若點(diǎn)P是線段CB延長(zhǎng)線上一動(dòng)點(diǎn),按照(2)中的作法,請(qǐng)?jiān)趫D3中補(bǔ)全圖形,并直接寫出DE、BF、BP三者之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的一元二次方程x2﹣2(2﹣k)x+k2+12=0有實(shí)數(shù)根α、β.
(1)求實(shí)數(shù)k的取值范圍;
(2)設(shè),求t的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com