【題目】如圖,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,則圖中等腰三角形的個(gè)數(shù)是( )
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)
【答案】D
【解析】
利用等腰三角形的定義得到△ABC為等腰三角形,再根據(jù)等腰三角形的性質(zhì)和三角形內(nèi)角和計(jì)算出∠ABC=∠C=72°,接著根據(jù)角平分線(xiàn)的定義得到∠ABD=∠CBD=36°,然后判斷△ABD和△BDC為等腰三角形.
解:∵AB=AC,
∴△ABC為等腰三角形,
∴∠ABC=∠C=(180°﹣∠A)=(180°﹣36°)=72°,
∵BD平分∠ABC,
∴∠ABD=∠CBD=×72°=36°,
∴∠ABD=∠A,
∴△ABD為等腰三角形,
∵∠BDC=∠A+∠ABD=72°,
∴∠BDC=∠C,
∴△BDC為等腰三角形.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為貫徹落實(shí)省教育廳提出的“三生教育”.在母親節(jié)來(lái)臨之際,某校團(tuán)委組織了以“珍愛(ài)生命,
學(xué)會(huì)生存,感恩父母”為主題的教育活動(dòng),在學(xué)校隨機(jī)調(diào)查了50名同學(xué)平均每周在家做家務(wù)的時(shí)間,統(tǒng)
計(jì)并制作了如下的頻數(shù)分布表和扇形統(tǒng)計(jì)圖:
組別 | 做家務(wù)的時(shí)間 | 頻數(shù) | 頻率 |
A | 1≤t<2 | 3 | 0.06 |
B | 2≤t<4 | 20 | 0.40 |
C | 4≤t<6 | a | 0.30 |
D | 6≤t<8 | 8 | b |
E | t≥8 | 4 | 0.08 |
根據(jù)上述信息回答下列問(wèn)題:
(1)a= ,b= .
(2)在扇形統(tǒng)計(jì)圖中,B組所占圓心角的度數(shù)為 .
(3)全校共有2000名學(xué)生,估計(jì)該校平均每周做家務(wù)時(shí)間不少于4小時(shí)的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)()的圖象與x軸交于點(diǎn)A(﹣1,0),對(duì)稱(chēng)軸為直線(xiàn)x=1,與y軸的交點(diǎn)B在(0,2)和(0,3)之間(包括這兩點(diǎn)),下列結(jié)論:
①當(dāng)x>3時(shí),y<0;
②3a+b<0;
③;
④;
其中正確的結(jié)論是( )
A.①③④B.①②③C.①②④D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,正方形ABCD,點(diǎn)E是DC邊上的一動(dòng)點(diǎn),過(guò)點(diǎn)C作AE的垂線(xiàn)交AE延長(zhǎng)線(xiàn)于點(diǎn)F,過(guò)D作DH⊥CF,垂足為H,點(diǎn)O是AC中點(diǎn),連HO.
(1)如圖1,當(dāng)∠CAE=∠DAE時(shí),證明:AE=2CF;
(2)如圖2,當(dāng)點(diǎn)E在DC上運(yùn)動(dòng)時(shí),線(xiàn)段AF與線(xiàn)段HO之間是否存在確定的數(shù)量關(guān)系?若存在,證明你發(fā)現(xiàn)的結(jié)論:若不存在,請(qǐng)說(shuō)明理由;
(3)當(dāng)E為DC中點(diǎn)時(shí),AC=2,直接寫(xiě)出AF的長(zhǎng) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C在⊙O上,點(diǎn)P是圓上一動(dòng)點(diǎn),且與點(diǎn)C分別位于直徑AB的兩側(cè),,過(guò)點(diǎn)C作交PB的延長(zhǎng)線(xiàn)于點(diǎn)Q;
(1)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),CQ恰好是⊙O的切線(xiàn)?
(2)若點(diǎn)P與點(diǎn)C關(guān)于直徑AB對(duì)稱(chēng),且AB=5,求此時(shí)CQ的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于三個(gè)數(shù)a、b、c,用Ma,b,c表示這三個(gè)數(shù)的中位數(shù),用maxa,b,c表示這三個(gè)數(shù)中最大數(shù),例如:M2,1,01,max2,1,00,max2,1,a解決問(wèn)題:Msin45,cos60,tan60_____,如果max3,53x,2x63,則x的取值范圍為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=﹣x2+2x+m的部分圖象如圖所示,則關(guān)于x的一元二次方程﹣x2+2x+m=0的解為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,是一張直角三角形紙片,∠B=90°,AB=12,BC=8,小明想從中剪出一個(gè)以∠B為內(nèi)角且面積最大的矩形,經(jīng)過(guò)操作發(fā)現(xiàn),當(dāng)沿著中位線(xiàn)DE、EF剪下時(shí),所得的矩形的面積最大.
(1)請(qǐng)通過(guò)計(jì)算說(shuō)明小明的猜想是否正確;
(2)如圖②,在△ABC中,BC=10,BC邊上的高AD=10,矩形PQMN的頂點(diǎn)P、N分別在邊AB、AC上,頂點(diǎn)Q、M在邊BC上,求矩形PQMN面積的最大值;
(3)如圖③,在五邊形ABCDE中,AB=16,BC=20,AE=10,CD=8,∠A=∠B=∠C=90°.小明從中剪出了一個(gè)面積最大的矩形(∠B為所剪出矩形的內(nèi)角),求該矩形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,∠B=60°,AB=2,把菱形ABCD繞BC的中點(diǎn)E順時(shí)針旋轉(zhuǎn)60°得到菱形A'B'C'D',其中點(diǎn)D的運(yùn)動(dòng)路徑為,則圖中陰影部分的面積為__.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com