【題目】如圖,自左向右,水平擺放一組小球,按照以下規(guī)律排列,如:紅球,黃球,綠球,紅球,黃球,綠球,…嘉琪依次在小球上標(biāo)上數(shù)字12,3,4,5,6,…,則從左往右第100個(gè)黃球上所標(biāo)的數(shù)字為__________

【答案】299

【解析】

由圖可知,每三個(gè)球一個(gè)循環(huán),左邊第一個(gè)黃球的數(shù)字是2,第二個(gè)黃球的數(shù)字是2+3=5,第三個(gè)黃球的數(shù)字是2+3×2=8,…第n個(gè)黃球的數(shù)字為2+3×(n-1)=3n-1,據(jù)此即可解答本題.

解:由題意得,每三個(gè)球一個(gè)循環(huán),

左邊第一個(gè)黃球的數(shù)字是2,

左邊第二個(gè)黃球的數(shù)字是2+3=5

左邊第三個(gè)黃球的數(shù)字是2+3×2=8,

左邊第n個(gè)黃球的數(shù)字為2+3×(n-1)=3n-1,

∴從左往右第100個(gè)黃球上所標(biāo)的數(shù)字為:

故答案為:299

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知兩點(diǎn)在數(shù)軸上,點(diǎn)表示的數(shù)為-10,點(diǎn)以每秒3個(gè)單位長(zhǎng)度的速度從點(diǎn)向右運(yùn)動(dòng).點(diǎn)以每秒2個(gè)單位長(zhǎng)度的速度從點(diǎn)向右運(yùn)動(dòng)(點(diǎn)、同時(shí)出發(fā))

1)請(qǐng)你寫出數(shù)軸上點(diǎn)對(duì)應(yīng)的數(shù);

2)當(dāng)運(yùn)動(dòng)的時(shí)間為3秒時(shí),請(qǐng)你求出此時(shí)點(diǎn)在數(shù)軸上對(duì)應(yīng)的數(shù),并求出、之間的距離;

3)經(jīng)過幾秒,點(diǎn)、點(diǎn)分別到原點(diǎn)的距離相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是等腰直角三角形,∠ACB=90°,AC=BC=2,把ABC繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)45°后得到AB′C′,則線段BC在上述旋轉(zhuǎn)過程中所掃過部分(陰影部分)的面積是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料并解決后面的問題

材料:對(duì)數(shù)的創(chuàng)始人是蘇格蘭數(shù)學(xué)家納皮爾(JNpler1550-1617年),納皮爾發(fā)明對(duì)數(shù)是在指數(shù)書寫方式之前,直到18世紀(jì)瑞士數(shù)學(xué)家歐拉(Evler,1707--1783)才發(fā)現(xiàn)指數(shù)與對(duì)數(shù)之間的聯(lián)系,我們知道,n個(gè)相同的因數(shù)a相乘aa…,a記為an,如23=8,此時(shí),3叫做以2為底8的對(duì)數(shù),記為log28,即log28=3一般地若an=ba0a≠1b0),則n叫做以a為底b的對(duì)數(shù),記為logab,即logab=n.如34=81,則4叫做以3為底81的對(duì)數(shù),記為log381,即log381=4

1)計(jì)算下列各對(duì)數(shù)的值:log24=______log216=______,log264=______;

2)通過觀察(1)中三數(shù)log24、log216、log264之間滿足的關(guān)系式是______;

3)拓展延伸:下面這個(gè)一股性的結(jié)論成立嗎?我們來證明logaM+logaN=logaMNa0a≠1,M0,N0

證明:設(shè)logaM=m,logaN=n

由對(duì)數(shù)的定義得:am=M,an=N

aman=am+n=MN,

logaMN=m+n,

又∵logaM=mlogaN=n,

logaM+logaN=logaMNa0a≠1,M0N0);

4)仿照(3)的證明,你能證明下面的一般性結(jié)論嗎?logaM-logaN=logaa0a≠1,M0,N0

5)計(jì)算:log34+log39-log312的值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在四邊形ABCD中,ACBD于點(diǎn)E,AB=AC=BD,點(diǎn)MBC中點(diǎn),N為線段AM上的點(diǎn),且MB=MN.

(1)求證:BN平分∠ABE;

(2)若BD=1,連結(jié)DN,當(dāng)四邊形DNBC為平行四邊形時(shí),求線段BC的長(zhǎng);

(3)如圖②,若點(diǎn)FAB的中點(diǎn),連結(jié)FN、FM,求證:MFN∽△BDC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市預(yù)測(cè)某飲料有發(fā)展前途,用1600元購(gòu)進(jìn)一批飲料,面市后果然供不應(yīng)求,又用6000元購(gòu)進(jìn)這批飲料,第二批飲料的數(shù)量是第一批的3倍,但單價(jià)比第一批貴2.

(1)第一批飲料進(jìn)貨單價(jià)多少元?

(2)若二次購(gòu)進(jìn)飲料按同一價(jià)格銷售,兩批全部售完后,獲利不少于1200元,那么銷售單價(jià)至少為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,AB=4,ECD上一動(dòng)點(diǎn),AEBDF,過FFHAEH,過HGHBDG,下列有四個(gè)結(jié)論:①AF=FH,②∠HAE=45°,BD=2FG,④△CEH的周長(zhǎng)為定值,其中正確的結(jié)論有(  )

A. ①②③ B. ①②④ C. ①③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)在數(shù)軸上分別表示有理數(shù),兩點(diǎn)之間的距離表示為,在數(shù)軸上AB兩點(diǎn)之間的距離

利用數(shù)形結(jié)合思想回答下列問題:

(1)數(shù)軸上表示-21的兩點(diǎn)之間的距離是______

(2)數(shù)軸上表示-1的兩點(diǎn)之間的距離表示為______

(3)在數(shù)軸上點(diǎn)表示數(shù),點(diǎn)表示數(shù),點(diǎn)表示數(shù),且滿足,若是數(shù)軸上任意一點(diǎn),點(diǎn)表示的數(shù)是,當(dāng)時(shí),的值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長(zhǎng)方體的底面是邊長(zhǎng)為2cm的正方形,高是6cm

1)如果用一根細(xì)線從點(diǎn)A開始經(jīng)過4個(gè)側(cè)面圍繞一圈到達(dá)點(diǎn)B.那么所用的細(xì)線最短長(zhǎng)度是多少厘米?

2)如果從A點(diǎn)開始經(jīng)過4個(gè)側(cè)面纏繞2圈到達(dá)點(diǎn)B,那么所用細(xì)線最短長(zhǎng)度是多少厘米?

查看答案和解析>>

同步練習(xí)冊(cè)答案