如圖,兩個正方形的面積分別為16,9,兩陰影部分面積分別為a,b(a>b),則(a-b)等于( )
A.7 B.6 C.5 D.4
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖:AB∥CD,GO和HO分別是∠BGH和∠GHD的角平分線。你能算出∠GOH的度數(shù)嗎?如果作OP⊥AB,OQ⊥CD,OR⊥EF,你能找到圖中的全等三角形嗎?說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖16,在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為圓心,2為半徑畫⊙O,P是⊙O上一動點(diǎn),且P在第一象限內(nèi),過點(diǎn)P作⊙O的切線與x軸相交于點(diǎn)A,與y軸相交于點(diǎn)B.
(1)點(diǎn)P在運(yùn)動時,線段AB的長度也在發(fā)生變化,請寫出線段AB長度的最小值,并說明理由;
(2)在⊙O上是否存在一點(diǎn)Q,使得以Q,O,A,P為頂點(diǎn)的四邊形是平行四邊形?若存在,請求出Q點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
端午節(jié)期間,揚(yáng)州某商場為了吸引顧客,開展有獎促銷活動,設(shè)立了一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤,轉(zhuǎn)盤被分成4個面積相等的扇形,四個扇形區(qū)域里分別標(biāo)有“10元”、“20元”、“30元”、“40元”的字樣(如圖8).規(guī)定:同一日內(nèi),顧客在本商場每消費(fèi)滿100元就可以轉(zhuǎn)轉(zhuǎn)盤一次,商場根據(jù)轉(zhuǎn)盤指針指向區(qū)域所標(biāo)金額返還相應(yīng)數(shù)額的購物券,某顧客當(dāng)天消費(fèi)240元,轉(zhuǎn)了兩次轉(zhuǎn)盤.
(1)該顧客最少可得_______元購物券,最多可得______元購物券;
(2)請用畫樹狀圖或列表的方法,求該顧客所獲購物券金額不低于50元的概率.
圖8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
綜合與探究:如圖,在平面直角坐標(biāo)系中,拋物線y=-x2+2x+3與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)D是該拋物線的頂點(diǎn).
(1)求直線AC的解析式及B、D兩點(diǎn)的坐標(biāo);
(2)點(diǎn)P是x軸上一個動點(diǎn),過P作直線l∥AC交拋物線于點(diǎn)Q.試探究:隨著P點(diǎn)的運(yùn)動,在拋物線上是否存在點(diǎn)Q,使以點(diǎn)A、P、Q、C為頂點(diǎn)的四邊形是平行四邊形,若存在,請直接寫出符合條件的點(diǎn)Q的坐標(biāo);若不存在,請說明理由;
(3)請在直線AC上找一點(diǎn)M,使△BDM的周長最小,求出M點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,四邊形ABCD是正方形,點(diǎn)G是BC邊上任意一點(diǎn),DE⊥AG于E,BF∥DE,交AG于F.
(1)求證:AF-BF=EF;
(2)將△ABF繞點(diǎn)A逆時針旋轉(zhuǎn),使得AB與AD重合,記此時點(diǎn)F的對應(yīng)點(diǎn)為點(diǎn)F′,若正方形邊長為3,求點(diǎn)F′與旋轉(zhuǎn)前的圖中點(diǎn)E之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
布袋中有3個紅球和6個白球,它們除顏色外其他都相同,如果從布袋里隨機(jī)摸出一個球,那么所摸到的球恰好為紅球的概率是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖是老年活動中心門口放著的一個招牌,這個招牌是由三個特大號的骰子摞在一起而成的,每個骰子的六個面的點(diǎn)數(shù)分別是1到6,其中可看見7個面,其余11個面是看不見的,則看不見的面上的點(diǎn)數(shù)總和是( )
A. 41 B.40 C.39 D.38
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com