如圖,四邊形ABCD是矩形,點E在線段CB的延長線上,連接DE交AB于點F,∠AED=2∠CED,點G是DF的中點,若BE=1,AG=4,則AB的長為    .


【解析】∵四邊形ABCD是矩形,

∴AD∥BC.∴∠CED=∠ADE.

∵四邊形ABCD是矩形,∴∠BAD=90°.

∵點G是DF的中點,

∴AG=DF=DG.∴∠AGE=2∠ADE=2∠CED.

∵∠AED=2∠CED,∴∠AGE=∠AED,

∴AE=AG=4.

在Rt△ABE中AB===.


練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:


如圖,用式子表示下列句子(閱讀(1),完成(2)(3)) (1)因為∠1和∠B相等,根據(jù)“同位角相等,兩直線平行”,所以DEBC平行;


查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,圖中有一長、寬、高分別為5cm,4cm,3cm的木箱,在它里面放入一根細木條(木條的粗細、變形忽略不計),要求木條不能露出木箱,請你算一算,能放入的細木條的最大長度是(  )

A.cm               B.cm               C.5cm                D.5cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


下面的表格列出了一個實驗的統(tǒng)計數(shù)據(jù),表示皮球從高處落下時,彈跳高度b與下降高度d的關(guān)系,下面能表示這種關(guān)系的式子是(  )

d

50

80

100

150

b

25

40

50

75

A.b=d2              B.b=2d          C.b=               D.b=d+25

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,四邊形ABCD和四邊形AEFC是兩個矩形,點B在EF邊上,若矩形ABCD和矩形AEFC的面積分別是S1,S2,則S1,S2的大小關(guān)系是(  )

A.S1>S2         B.S1=S2         C.S1<S2         D.3S1=2S2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


▱ABCD中,AC交BD于點O,再添加一個條件,仍不能判定四邊形ABCD是矩形的是(  )

A.AB=AD         B.OA=OB

C.AC=BD         D.DC⊥BC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,在△ABC中,點O是AC邊上(端點除外)的一個動點,過點O作直線MN∥BC.設(shè)MN交∠BCA的平分線于點E,交∠BCA的鄰補角的平分線于點F,連接AE,AF.那么當點O運動到何處時,四邊形AECF是矩形?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


一種千斤頂利用了四邊形的不穩(wěn)定性.如圖,其基本形狀是一個菱形,中間通過螺桿連接,轉(zhuǎn)動手柄可改變∠ADC的大小(菱形的邊長不變),從而改變千斤頂?shù)母叨?即A,C之間的距離).若AB=40cm,當∠ADC從60°變?yōu)?20°時,千斤頂升高了多少?(≈1.414,≈1.732,結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


10位學生分別購買如下尺碼的鞋子:20,20,21,22,22,22,22,23,23,24(單位:cm).這組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)三個指標中鞋店老板最喜歡的是    .

查看答案和解析>>

同步練習冊答案