【題目】如圖,一小孩將一只皮球從A處拋出去,它所經(jīng)過的路線是某個二次函數(shù)圖象的一部分,如果他的出手處A距地面的距離OA1m,球路的最高點B(8,9),則這個二次函數(shù)的表達(dá)式為______,小孩將球拋出了約______(精確到0.1m).

【答案】,16.5

【解析】

設(shè)出函數(shù)解析式的頂點式,把點A代入求得解析式,進(jìn)一步求出與x軸交點坐標(biāo),即可解答.

解答:解:如圖,頂點B的坐標(biāo)為(8,9),圖象經(jīng)過點A0,1),

設(shè)拋物線的解析式為y=ax-82+9,

把點A代入解析式得a=-,

因此這個二次函數(shù)的表達(dá)式為 y=-x-82+9

當(dāng)y=0時,-x2+2x+1=0,

解得x1≈16.5,x2=-0.5(不合題意,舍去);

因此小孩將球拋出了約16.5米.

故填y=-x-82+9、16.5

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了預(yù)防“感冒”,某學(xué)校對教室采用藥熏消毒法進(jìn)行消毒,已知藥物燃燒時,室內(nèi)每立方米空氣中的含藥量y(毫克)與時間x(分鐘)成正比例,藥物燃燒后y與x成反比例如圖。現(xiàn)測得藥物8分鐘燃畢,此時室內(nèi)空氣中每立方米的含藥量為6毫克,請根據(jù)題中提供的信息,解答下列問題:

(1)藥物燃燒時,y關(guān)于x的函數(shù)關(guān)系式為___,自變量x的取值范圍是___;藥物燃燒后y關(guān)于x的函數(shù)關(guān)系式為___.

(2)研究表明,當(dāng)空氣中每立方米的含藥量低于1.6毫克時學(xué)生方可進(jìn)教室,那么從消毒開始,至少需要經(jīng)過___分鐘后,學(xué)生才能回到教室;

(3)研究表明,當(dāng)空氣中每立方米的含藥量不低于3毫克且持續(xù)時間不低于10分鐘時,才能有效殺滅空氣中的病毒,那么此次消毒有效嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AE=BE,∠AED =ABC.

(1)求證:BD平分∠ABC

(2)AB = CB,∠AED =4EAD,求∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABAC,∠A120°,AB的垂直平分線交BCM,交ABE,AC的垂直平分線交BCN,交ACF,若MN2,則NF=___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD的邊ABx軸上,點B坐標(biāo)(﹣3,0),點Cy軸正半軸上,且sinCBO=,點P從原點O出發(fā),以每秒一個單位長度的速度沿x軸正方向移動,移動時間為t(0≤t≤5)秒,過點P作平行于y軸的直線l,直線l掃過四邊形OCDA的面積為S.

(1)求點D坐標(biāo).

(2)求S關(guān)于t的函數(shù)關(guān)系式.

(3)在直線l移動過程中,l上是否存在一點Q,使以B、C、Q為頂點的三角形是等腰直角三角形?若存在,直接寫出Q點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠A40°,點DBC邊上(不與C、D點重合),點P、點Q分別是AC、AB邊上的動點,當(dāng)△DPQ的周長最小時,則∠PDQ的度數(shù)為( 。

A. 140°B. 120°C. 100°D. 70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一條直線過點,且與拋物線交于兩點,其中點的橫坐標(biāo)是

求這條直線的函數(shù)關(guān)系式及點的坐標(biāo).

軸上是否存在點,使得是直角三角形?若存在,求出點的坐標(biāo),若不存在,請說明理由.

過線段上一點,作軸,交拋物線于點,點在第一象限,點,當(dāng)點的橫坐標(biāo)為何值時,的長度最大?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形 中,,, 是矩形 中能剪出的最大圓,矩形 固定不動, 從如圖位置開始沿射線 方向平移,當(dāng) 與矩形 重疊部分面積為 面積一半時,平移距離為________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠ABC90°,ADBC,以B為圓心,BC長為半徑畫弧,與射線AD相交于點E,連接BE,過點CCFBE,垂足為F.若AB6BC10,則EF的長為___________.

查看答案和解析>>

同步練習(xí)冊答案