【題目】某校為了解初中學(xué)生每天在校體育活動(dòng)的時(shí)間(單位:h),隨機(jī)調(diào)査了該校的部分初中學(xué)生.根據(jù)調(diào)查結(jié)果,繪制出如下的統(tǒng)計(jì)圖1和圖2.請(qǐng)根據(jù)相關(guān)信息,解答下列問(wèn)題:

(Ⅰ)本次接受調(diào)查的初中學(xué)生人數(shù)為   ,圖1m的值為   ;

(Ⅱ)求統(tǒng)計(jì)的這組每天在校體育活動(dòng)時(shí)間數(shù)據(jù)的眾數(shù)和中位數(shù);

(Ⅲ)根據(jù)統(tǒng)計(jì)的這組每天在校體育活動(dòng)時(shí)間的樣本數(shù)據(jù),若該校共有1200名初中學(xué)生,估計(jì)該校每天在校體育活動(dòng)時(shí)間大于1h的學(xué)生人數(shù).

【答案】(Ⅰ)4025;(Ⅱ)眾數(shù)是1.5,中位數(shù)是1.5;(Ⅲ)1080

【解析】

(Ⅰ)根據(jù)統(tǒng)計(jì)圖中的數(shù)據(jù)可以求得本次調(diào)查的學(xué)生人數(shù),進(jìn)而求得m的值;
(Ⅱ)根據(jù)統(tǒng)計(jì)圖中的數(shù)據(jù)可以求得這組數(shù)據(jù)的平均數(shù)和眾數(shù)、中位數(shù);
(Ⅲ)根據(jù)統(tǒng)計(jì)圖中的數(shù)據(jù)可以求得該校每天在校體育活動(dòng)時(shí)間大于1h的學(xué)生人數(shù).

(Ⅰ)本次接受調(diào)查的初中學(xué)生人數(shù)為:4÷10%40,

m%25%,

故答案為:4025

(Ⅱ)由條形統(tǒng)計(jì)圖得,4個(gè)0.98個(gè)1.2,15個(gè)1.5,10個(gè)1.8,3個(gè)2.1,

1.5出現(xiàn)的次數(shù)最多,15次,

∴眾數(shù)是1.5,

20個(gè)數(shù)和第21個(gè)數(shù)都是1.5,

∴中位數(shù)是1.5;

(Ⅲ)1200×1080(人),

答:該校每天在校體育活動(dòng)時(shí)間大于1h的學(xué)生有1080人.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)舉行鋼筆書(shū)法大賽,對(duì)各年級(jí)同學(xué)的獲獎(jiǎng)情況進(jìn)行了統(tǒng)計(jì),并繪制了如下兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)結(jié)合圖中相關(guān)信息解答下列問(wèn)題:

(1)扇形統(tǒng)計(jì)圖中三等獎(jiǎng)所在扇形的圓心角的度數(shù)是______度;

(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)全;

(3)獲得一等獎(jiǎng)的同學(xué)中有來(lái)自七年級(jí),有來(lái)自九年級(jí),其他同學(xué)均來(lái)自八年級(jí).現(xiàn)準(zhǔn)備從獲得一等獎(jiǎng)的同學(xué)中任選2人參加市級(jí)鋼筆書(shū)法大賽,請(qǐng)通過(guò)列表或畫(huà)樹(shù)狀圖的方法求所選出的2人中既有八年級(jí)同學(xué)又有九年級(jí)同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y= (x-h)2+k的頂點(diǎn)在x軸上,其對(duì)稱(chēng)軸與直線y=x交于點(diǎn)A1,1),點(diǎn)P是拋物線上一點(diǎn),以P為圓心,PA長(zhǎng)為半徑畫(huà)圓,⊙Px軸于B、C兩點(diǎn).

h= ,k= ;

⑵①當(dāng)點(diǎn)P在頂點(diǎn)時(shí),BC= ;

BC的值是否隨P點(diǎn)橫坐標(biāo)的變化而變化?如果變化,請(qǐng)說(shuō)明理由,如果不變化,請(qǐng)求出這個(gè)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形中,點(diǎn)是對(duì)角線上一動(dòng)點(diǎn),連接,作分別交于點(diǎn)于點(diǎn)

(1)如圖1,若恰好平分,求證:;

(2)如圖2,若,取的中點(diǎn),連接于點(diǎn)

求證:①;②

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形中,點(diǎn)是對(duì)角線上一動(dòng)點(diǎn),連接,作分別交于點(diǎn),于點(diǎn)

(1)如圖1,若恰好平分,求證:;

(2)如圖2,若,取的中點(diǎn),連接于點(diǎn)

求證:①;②

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn),,動(dòng)點(diǎn)在線段上,點(diǎn)、按逆時(shí)針順序排列,且,當(dāng)點(diǎn)從點(diǎn)運(yùn)動(dòng)到點(diǎn)時(shí),則點(diǎn)運(yùn)動(dòng)的路徑長(zhǎng)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,直線軸、軸分別交于、兩點(diǎn),拋物線經(jīng)過(guò)兩點(diǎn),與軸的另一個(gè)交點(diǎn)為

1)求拋物線的解析式及點(diǎn)坐標(biāo);

2)若點(diǎn)Mx軸下方拋物線上一動(dòng)點(diǎn),連接MA、MB、BC,當(dāng)點(diǎn)M運(yùn)動(dòng)到某一位置時(shí),四邊形AMBC面積最大,求此時(shí)點(diǎn)M的坐標(biāo)及四邊形AMBC的面積;

3)如圖2,若點(diǎn)是半徑為2的⊙上一動(dòng)點(diǎn),連接、,當(dāng)點(diǎn)運(yùn)動(dòng)到某一位置時(shí),的值最小為_________(直接寫(xiě)出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小杰早上從家勻速步行去學(xué)校,走到途中發(fā)現(xiàn)英語(yǔ)書(shū)忘在家里了,隨即打電話給爸爸,爸爸立即送英語(yǔ)書(shū)去,小杰掉頭以原速往回走,幾分鐘后,路過(guò)一家文具店,此時(shí)還未遇到爸爸,小杰便在文具店購(gòu)買(mǎi)了幾個(gè)筆記本,剛付完款,爸爸剛好趕到,將英語(yǔ)書(shū)交給了小杰(途中小杰打電話、小杰的爸爸找英語(yǔ)書(shū)的時(shí)間忽略不計(jì)):然后,爸爸原速返回,同時(shí)小杰把速度提高到原來(lái)的前往學(xué)校,爸爸到家后,過(guò)一會(huì)小杰才到達(dá)學(xué)校.兩人之間的距離(米)與小杰從家出發(fā)的時(shí)間(分鐘)的函數(shù)關(guān)系如圖所示,則家與學(xué)校相距______米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)探究發(fā)現(xiàn):下面是一道例題及解答過(guò)程,請(qǐng)補(bǔ)充完整:

如圖①在等邊ABC內(nèi)部,有一點(diǎn)P,若∠APB=150°,求證:AP2+BP2=CP2

證明:將APCA點(diǎn)逆時(shí)針旋轉(zhuǎn)60°,得到AP’B,連接PP’,則APP’為等邊三角形

∴∠APP’=60° ,PA=PP’ PC=

∵∠APB=150°,∴∠BPP’=90°

P’P2+BP2= ,即PA2+PB2=PC2

2)類(lèi)比延伸:如圖②在等腰ABC中,∠BAC=90°,內(nèi)部有一點(diǎn)P,若∠APB=135°,試判斷線段PA,PBPC之間的數(shù)量關(guān)系,并證明.

3)聯(lián)想拓展:如圖③在ABC中,∠BAC=120°,AB=AC,點(diǎn)P在直線AB上方,且∠APB=60°,滿足(kPA2+PB2=PC2(其中k0),請(qǐng)直接寫(xiě)出k的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案