【題目】探究:如圖,在△ABC 中,∠BAC=90°,AB=AC,直線 m 經(jīng)過點 A,BD⊥m 于點 D,CE⊥m 于點 E,求證:△ABD≌△CAE.

應用:如圖,在△ABC 中,AB=AC,D、A、E 三點都在直線 m 上,并且有∠BDA=∠AEC=∠BAC,求證:DE=BD+CE.

【答案】證明見解析

【解析】

(1)根據(jù)BD⊥直線m,CE⊥直線m得∠BDA=CEA=90,而∠BAC=90,根據(jù)等角的余角相等得∠CAE=ABD,然后根據(jù)“AAS”可判斷△ADB≌△CEA.AE=BD,AD=CE,于是DE=AE+AD=BD+CE;

(2)利用∠BDA=BAC=α,則∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,得出∠CAE=ABD,進而得出△ADB≌△CEA即可得出答案.

證明:(1)∵BD⊥直線m,CE⊥直線m,

∴∠BDA=∠CEA=90°,

∵∠BAC=90°

∴∠BAD+∠CAE=90°,

∵∠BAD+∠ABD=90°,

∴∠CAE=∠ABD,

∵在△ADB和△CEA中

,

∴△ADB≌△CEA(AAS);

(2)設∠BDA=∠BAC=α,

∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,

∴∠CAE=∠ABD,

∵在△ADB和△CEA中

,

∴△ADB≌△CEA(AAS),

∴AE=BD,AD=CE,

∴DE=AE+AD=BD+CE.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】我國實施的“一帶一路”戰(zhàn)略方針,惠及沿途各國.中歐班列也已融入其中.從我國重慶開往德國的杜伊斯堡班列,全程約11025千米.同樣的貨物,若用輪船運輸,水路路程是鐵路路程的1.6倍,水路所用天數(shù)是鐵路所用天數(shù)的3倍,列車平均日速(平均每日行駛的千米數(shù))是輪船平均日速的2倍少49千米.分別求出列車及輪船的平均日速.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系內(nèi),小正方形網(wǎng)格的邊長為1個單位長度, 的三個頂點的坐標分別
(1)畫出 關于 軸的對稱圖形 ;
(2)畫出將 繞原點 逆時針方向旋轉 得到的 ;
(3)求(2)中線段 掃過的圖形面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC 中,點 D,E 分別在邊 AC,AB 上,BD CE 交于點 O,給出下列三個條件:①∠EBO=∠DCO;②BE=CD;③OB=OC.

(1)上述三個條件中,由哪兩個條件可以判定△ABC 是等腰三角形?(用序號寫出所有成立的情形)

(2)請選擇(1)中的一種情形,寫出證明過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某班在一次班會課上,就遇見路人摔倒后如何處理的主題進行討論,并對全班 50 名學生的處理方式進行統(tǒng)計,得出相關統(tǒng)計表和統(tǒng)計圖.

組別

A

B

C

D

處理方式

迅速離開

馬上救助

視情況而定

只看熱鬧

人數(shù)

m

30

n

5

請根據(jù)表圖所提供的信息回答下列問題:

(1)統(tǒng)計表中的 m= ,n= ;

(2)補全頻數(shù)分布直方圖;

(3)若該校有 2000 名學生,請據(jù)此估計該校學生采取馬上救助方式的學生有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點C在線段AB上,△DAC和△DBE都是等邊三角形.
(1)求證:△DAB≌△DCE;
(2)求證:DA∥EC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中學生帶手機上學的現(xiàn)象越來越受到社會的關注,為此,某記者隨機調查了某城區(qū)若干名學生家長對這種現(xiàn)象的態(tài)度(態(tài)度分為:A:無所謂;B:基本贊成;C:贊成;D:反對),并將調查結果繪制成頻數(shù)折線圖1和統(tǒng)計圖2(不完整)。請根據(jù)圖中提供的信息,解答下列問題:

1)此次抽樣檢查中,共調查了  名學生家長;

2)將圖1補充完整;

3)根據(jù)抽樣檢查的結果,請你估計該市城區(qū)6000名中學生家長中有多少名家長持反對態(tài)度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將兩塊直角三角形的一條直角邊重合疊放,已知AC=BC= +1,∠D=60°,則兩條斜邊的交點E到直角邊BC的距離是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c(a≠0)與x軸交于A,B兩點(點A在點B的左側),與y軸交于點C,點A的坐標為(﹣1,0),且OC=OB,tan∠ACO=

(1)求拋物線的解析式;
(2)若點D和點C關于拋物線的對稱軸對稱,直線AD下方的拋物線上有一點P,過點P作PH⊥AD于點H,作PM平行于y軸交直線AD于點M,交x軸于點E,求△PHM的周長的最大值;
(3)在(2)的條件下,以點E為端點,在直線EP的右側作一條射線與拋物線交于點N,使得∠NEP為銳角,在線段EB上是否存在點G,使得以E,N,G為頂點的三角形與△AOC相似?如果存在,請求出點G的坐標;如果不存在,請說明理由.

查看答案和解析>>

同步練習冊答案