【題目】如圖,平面直角坐標(biāo)系內(nèi),小正方形網(wǎng)格的邊長為1個單位長度, 的三個頂點的坐標(biāo)分別
(1)畫出 關(guān)于 軸的對稱圖形 ;
(2)畫出將 繞原點 逆時針方向旋轉(zhuǎn) 得到的 ;
(3)求(2)中線段 掃過的圖形面積.

【答案】
(1)解:


(2)解:


(3)解:線段OA掃過的面積是 .
【解析】(1)關(guān)于y軸對稱,縱坐標(biāo)不變,橫坐標(biāo)改變符號;可計算出A,B,C對稱后的點的坐標(biāo)A1,B1,C1,連接即可。
(2)連接AO,以AO為起始邊,O為頂點,逆時針做90°角,在終邊上截取A2O=AO,A2即為A的旋轉(zhuǎn)對應(yīng)點;同理可得B2,C2,連接A2,B2,C2,連接即可。
(3)(2)中線段 O A 掃過的圖形面積即為扇形AOA2的面積,所以由題易得半徑r=5,圓心角為旋轉(zhuǎn)角90°,利用扇形面積公式可得結(jié)果。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方體的長為15寬為10,高為20,點B離點C的距離為5,一只螞蟻如果要沿著長方體的表面從點A爬到點B,需要爬行的最短距離是(

A. 20 B. 25 C. 30 D. 32

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某校準(zhǔn)備組織學(xué)生及學(xué)生家長坐高鐵到杭州進(jìn)行社會實踐,為了便于管理.所有人員必須乘坐在同一列高鐵上.根據(jù)報名人數(shù),若都買一等座單程火車票需6560元,若都買二等座單程火車票,則需3120元(學(xué)生票二等座打7.5折,一等座不打折).已知學(xué)生家長與教師的人數(shù)之比為3:1,余姚北站到杭州東站的火車票價格如表所示:

運行區(qū)間

票價

上車站

下車站

一等座

二等座

余姚北

杭州東

82(元)

48(元)


(1)參加社會實踐的老師、家長與學(xué)生各有多少人?
(2)由于各種原因,二等座火車票單程只能買m張(m小于參加社會實踐的人數(shù)),其余的須買一等座火車票,在保證每位參與人員都有座位坐的前提下,請你設(shè)計最經(jīng)濟的購票方案,并寫出購買火車票的總費用(單程)y(元)(用含m的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖形中,既是軸對稱圖形又是中心對稱圖形的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀下面的例題,再解答后面的題目.

例:已知x2+y2﹣2x+4y+5=0,求x+y的值.

解:由已知得(x2﹣2x+1)+(y2+4y+4)=0,

即(x﹣1)2+(y+2)2=0.

因為(x﹣1)2≥0,(y+2)2≥0,它們的和為0,

所以必有(x﹣1)2=0,(y+2)2=0,

所以x=1,y=﹣2.

所以x+y=﹣1.

題目:已知x2+4y2﹣6x+4y+10=0,求xy的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“大美濕地,水韻鹽城”.某校數(shù)學(xué)興趣小組就“最想去的鹽城市旅游景點”隨機調(diào)查了本校部分學(xué)生,要求每位同學(xué)選擇且只能選擇一個最想去的景點,下面是根據(jù)調(diào)查結(jié)果進(jìn)行數(shù)據(jù)整理后繪制出的不完整的統(tǒng)計圖:

請根據(jù)圖中提供的信息,解答下列問題:

(1)求被調(diào)查的學(xué)生總?cè)藬?shù);

(2)補全條形統(tǒng)計圖,并求扇形統(tǒng)計圖中表示“最想去景點D”的扇形圓心角的度數(shù);

(3)若該校共有800名學(xué)生,請估計“最想去景點B“的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知線段AB=16cm,點C為線段AB上的一個動點,點D、E分別是AC和BC的中點.

(1)若點C恰為AB的中點,求DE的長;

(2)若AC=6cm,求DE的長;

(3)試說明不論AC取何值(不超過16cm),DE的長不變;

(4)知識遷移:如圖2,已知AOB=130°,過角的內(nèi)部任一點C畫射線OC,若OD、OE分別平分AOCBOC,試說明DOE=65°與射線OC的位置無關(guān).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究:如圖,在△ABC 中,∠BAC=90°,AB=AC,直線 m 經(jīng)過點 A,BD⊥m 于點 D,CE⊥m 于點 E,求證:△ABD≌△CAE.

應(yīng)用:如圖,在△ABC 中,AB=AC,D、A、E 三點都在直線 m 上,并且有∠BDA=∠AEC=∠BAC,求證:DE=BD+CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某服裝店用4400元購進(jìn)A,B兩種新式服裝,按標(biāo)價售出后可獲得毛利潤2800元(毛利潤=售價﹣進(jìn)價),這兩種服裝的進(jìn)價,標(biāo)價如表所示.

類型價格

A

B

 進(jìn)價(元/件)

60

100

 標(biāo)價(元/件)

100

160

(1)請利用二元一次方程組求這兩種服裝各購進(jìn)的件數(shù);

(2)如果A種服裝按標(biāo)價的9折出售,B種服裝按標(biāo)價的8折出售,那么這批服裝全部售完后,服裝店比按標(biāo)價出售少收入多少元?

查看答案和解析>>

同步練習(xí)冊答案