一元二次方程(x+1)(3x﹣2)=10的一般形式是__________.
3x2+x﹣12=0.
【考點(diǎn)】一元二次方程的一般形式.
【分析】先把一元二次方程(x+1)(3x﹣2)=10的各項(xiàng)相乘,再按二次項(xiàng),一次項(xiàng),常數(shù)項(xiàng)的順序進(jìn)行排列即可.
【解答】解:∵一元二次方程(x+1)(3x﹣2)=10可化為3x2﹣2x+3x﹣2=10,
∴化為一元二次方程的一般形式為3x2+x﹣12=0.
【點(diǎn)評】去括號的過程中要注意符號的變化,不要漏乘,移項(xiàng)時(shí)要注意符號的變化.注意在說明二次項(xiàng)系數(shù),一次項(xiàng)系數(shù),常數(shù)項(xiàng)時(shí),一定要帶上前面的符號.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
觀察表格:
根據(jù)表格解答下列問題:
(1)a= ,b= ,c= ;
(2)畫出函數(shù)y=ax2+bx+c的圖象,并根據(jù)圖象,直接
寫出當(dāng)x取什么實(shí)數(shù)時(shí),不等式ax2+bx+c>0成立.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
將拋物線向左平移2個(gè)單位,再向下平移3個(gè)單位后,所得拋物線的解析式為y=x2﹣1,則原拋物線的解析式為( )
A.y=x2+3 B.y=x2﹣3 C.y=(x+2)2﹣3 D.y=(x﹣2)2+2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
超市市場部整理出銷售某品牌新款童裝的銷售量與銷售單價(jià)的相關(guān)信息如下:
已知該童裝的進(jìn)價(jià)為每件60元,設(shè)銷售單價(jià)為x元,銷售單價(jià)不低于進(jìn)價(jià),且獲利不得高于45%,設(shè)銷售該款童裝的利潤為W元.
(1)求利潤W與銷售單價(jià)x之間的關(guān)系式,并求銷售單價(jià)定為多少元時(shí),商場可獲得最大利潤,最大利潤是多少元?
(2)若超市銷售該款童裝獲得的利潤不低于500元,試確定銷售單價(jià)x的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
將拋物線y=3x2向右平移兩個(gè)單位,再向下平移4個(gè)單位,所得拋物線是( )
A.y=3(x+2)2+4 B.y=3(x﹣2)2+4 C.y=3(x﹣2)2﹣4 D.y=3(x+2)2﹣4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
二次函數(shù) y=ax2+bx+c(a≠0)的圖象如圖,給出下列四個(gè)結(jié)論:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④abc>0,其中正確結(jié)論是__________.(填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖所示,在拋物線y=﹣x2上有A,B兩點(diǎn),其橫坐標(biāo)分別為1,2;在y軸上有一動(dòng)點(diǎn)C,使AC+BC距離最短,求C點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系xOy中,直線y=-2x+1與y軸交于點(diǎn)C,直線y=x+k(k≠0)與y軸交于點(diǎn)A,與直線y=-2x+1交于點(diǎn)B,設(shè)點(diǎn)B的橫坐標(biāo)為x0.
(1)如圖,若x0=-1.
①求點(diǎn)B的坐標(biāo)及k的值;
②求直線y=-2x+1、直線y=x+k與y軸所圍成的△ABC的面積;
(2)若-2<x0<-1,求整數(shù)k的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com