【題目】如圖,已知拋物線經(jīng)過兩點A(﹣3,0),B(0,3),且其對稱軸為直線x=﹣1.
(1)求此拋物線的解析式;
(2)若點P是拋物線上點A與點B之間的動點(不包括點A,點B),求△PAB的面積的最大值,并求出此時點P的坐標(biāo).
【答案】(1)y=﹣x2﹣2x+3;(2)△PAB的面積的最大值為,此時點P的坐標(biāo)(,).
【解析】
(1)因為對稱軸是直線x=-1,所以得到點A(-3,0)的對稱點是(1,0),因此利用交點式y=a(x-x1)(x-x2),求出解析式.
(2)根據(jù)面積的和差,可得二次函數(shù),根據(jù)二次函數(shù)的性質(zhì),可得最大值,根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得答案.
(1)∵拋物線對稱軸是直線x=﹣1且經(jīng)過點A(﹣3,0)
由拋物線的對稱性可知:拋物線還經(jīng)過點(1,0)
設(shè)拋物線的解析式為y=a(x﹣x1)(x﹣x2)(a≠0)
即:y=a(x﹣1)(x+3)
把B(0,3)代入得:3=﹣3a
∴a=﹣1
∴拋物線的解析式為:y=﹣x2﹣2x+3.
(2)設(shè)直線AB的解析式為y=kx+b,
∵A(﹣3,0),B(0,3),
∴,
∴直線AB為y=x+3,
作PQ⊥x軸于Q,交直線AB于M,
設(shè)P(x,﹣x2﹣2x+3),則M(x,x+3),
∴PM=﹣x2﹣2x+3﹣(x+3)=﹣x2﹣3x,
∴,
當(dāng)時,,,
∴△PAB的面積的最大值為,此時點P的坐標(biāo)為(,).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有三張形狀大小完全相同的牌,正面分別標(biāo)有數(shù)字2,3,5.將三張牌背面朝上,洗勻后放在桌子上.
(1)從中任取一張,求取到偶數(shù)的概率.
(2)甲、乙兩人進(jìn)行摸牌游戲.
①甲從中隨機(jī)抽取一張牌,記錄數(shù)字后放回洗勻,乙再隨機(jī)抽取一張.請用列表法或畫樹狀圖的方法,求兩人抽取相同數(shù)字的概率;
②若兩人抽取的數(shù)字和為2的倍數(shù),則甲獲勝;若抽取的數(shù)字和為5的倍數(shù),則乙獲勝.這個游戲公平嗎?請用概率的知識加以解釋.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】桌面倒扣著背面圖案相同的四張卡片,其正面分別標(biāo)記有數(shù)字,先任意抽取一張,卡片上的數(shù)記作x,不放回,再抽取一張,卡片上的數(shù)字記作y,設(shè)點A的坐標(biāo)為(x,y).
(1)用樹狀圖或列表法列舉點A所有的坐標(biāo)情況;
(2)求點A在拋物線上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系內(nèi),小正方形網(wǎng)格的邊長為1個單位長度,△ABC的頂點A的坐標(biāo)為(﹣3,4).
(1)畫出△ABC關(guān)于y軸的對稱圖形△A1B1C1,并寫出A1的坐標(biāo);
(2)畫出將△ABC繞原點O逆時針方向旋轉(zhuǎn)90°得到的△A2B2C2,并寫出A2的坐標(biāo);
(3)求出(2)中點A所經(jīng)過的路徑的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下圖是一個橫斷面為拋物線形狀的拱橋,當(dāng)水面寬4 m時,拱頂(拱橋洞的最高點)離水面2 m,當(dāng)水面下降1 m時,水面的寬度為_____m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的盒子中裝有大小和形狀相同的3個紅球和2個白球,把它們充分?jǐn)噭颍?/span>
(1)求從中任意抽取1個球恰好是紅球的概率;
(2)學(xué)校決定在甲、乙兩名同學(xué)中選取一名作為學(xué)生代表發(fā)言,制定如下規(guī)則:從盒子中任取兩個球,若兩球同色,則選甲;若兩球異色,則選乙,你認(rèn)為這個規(guī)則公平嗎?請用列表法或畫樹狀圖法加以說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知直線y=kx+m與x軸、y軸分別交于A、C兩點,拋物線y=﹣x2+bx+c經(jīng)過A、C兩點,點B是拋物線與x軸的另一個交點,當(dāng)x=﹣時,y取最大值.
(1)求拋物線和直線的解析式;
(2)設(shè)點P是直線AC上一點,且S△ABP:S△BPC=1:3,求點P的坐標(biāo);
(3)若直線y=x+a與(1)中所求的拋物線交于M、N兩點,問:
①是否存在a的值,使得∠MON=90°?若存在,求出a的值;若不存在,請說明理由;
②猜想當(dāng)∠MON>90°時,a的取值范圍(不寫過程,直接寫結(jié)論).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,D是邊BC上一點,以點A為圓心,AD長為半徑作弧,如果與邊BC有交點E(不與點D重合),那么稱為的A-外截弧.例如,圖中是的一條A-外截弧.在平面直角坐標(biāo)系xOy中,已知存在A-外截弧,其中點A的坐標(biāo)為,點B與坐標(biāo)原點O重合.
(1)在點,,,中,滿足條件的點C是_______.
(2)若點C在直線上.
①求點C的縱坐標(biāo)的取值范圍.
②直接寫出的A-外截弧所在圓的半徑r的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解方程.(1)用配方法解下列一元二次方程. x2-x-=0.
(2)兩個數(shù)的和為8,積為9.75,求這兩個數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com