【題目】已知,在直角三角形ABC中,∠ACB=90°,D是AB上一點(diǎn),且∠ACD=∠B.
(1)如圖1,求證:CD⊥AB;
(2)將△ADC沿CD所在直線(xiàn)翻折,A點(diǎn)落在BD邊所在直線(xiàn)上,記為A′點(diǎn).
①如圖2,若∠B=34°,求∠A′CB的度數(shù);
②若∠B=n°,請(qǐng)直接寫(xiě)出∠A′CB的度數(shù)(用含n的代數(shù)式表示).
【答案】(1)詳見(jiàn)解析;(2)①∠A'CB=22°;②∠A'CB=90°﹣2n°.
【解析】
(1)根據(jù)直角三角形的性質(zhì)即可得出答案;
(2)①由∠ACD=∠B,得∠ACD=34°,再結(jié)合(1),得∠BCD=56°,再由折疊的性質(zhì)即可得到答案;
②解題過(guò)程同①.
(1)∵∠ACB=90°,
∴∠ACD+∠BCD=90°,
∵∠ACD=∠B,
∴∠B+∠BCD=90°,
∴∠BDC=90°,
∴CD⊥AB;
(2)①當(dāng)∠B=34°時(shí),∵∠ACD=∠B,
∴∠ACD=34°,
由(1)知,∠BCD+∠B=90°,
∴∠BCD=56°,
由折疊知,∠A'CD=∠ACD=34°,
∴∠A'CB=∠BCD﹣∠A'CD=56°﹣34°=22°;
②當(dāng)∠B=n°時(shí),同①的方法得,∠A'CD=n°,∠BCD=90°﹣n°,
∴∠A'CB=∠BCD﹣∠A'CD=90°﹣n°﹣n°=90°﹣2n°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小明從點(diǎn)O出發(fā),前進(jìn)5m后向右轉(zhuǎn)15°,再前進(jìn)5m后又向右轉(zhuǎn)15°,…這樣一直下去,直到他第一次回到出發(fā)點(diǎn)O為止,他所走的路徑構(gòu)成了一個(gè)多邊形.
(1)小明一共走了多少米?
(2)這個(gè)多邊形的內(nèi)角和是多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為創(chuàng)建“國(guó)家園林城市”,某校舉行了以“愛(ài)我黃石”為主題的圖片制作比賽,評(píng)委會(huì)對(duì)200名同學(xué)的參賽作品打分發(fā)現(xiàn),參賽者的成績(jī)x均滿(mǎn)足50≤x<100,并制作了頻數(shù)分布直方圖,如圖.
根據(jù)以上信息,解答下列問(wèn)題:
(1)請(qǐng)補(bǔ)全頻數(shù)分布直方圖;
(2)若依據(jù)成績(jī),采取分層抽樣的方法,從參賽同學(xué)中抽40人參加圖片制作比賽總結(jié)大會(huì),則從成績(jī)80≤x<90的選手中應(yīng)抽多少人?
(3)比賽共設(shè)一、二、三等獎(jiǎng),若只有25%的參賽同學(xué)能拿到一等獎(jiǎng),則一等獎(jiǎng)的分?jǐn)?shù)線(xiàn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知BD垂直平分線(xiàn)段AC,∠BCD=∠ADF,AF⊥AC
(1)證明:四邊形ABDF是平行四邊形;
(2)若AF=DF=5,AD=6,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)y= +3與坐標(biāo)軸交于A(yíng)、B兩點(diǎn),⊙O的半徑為2,點(diǎn)P是⊙O上動(dòng)點(diǎn),△ABP面積的最大值為cm2 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知將一塊直角三角板DEF放置在△ABC上,使得該三角板的兩條直角邊DE,DF恰好分別經(jīng)過(guò)點(diǎn)B、C.
(1)∠DBC+∠DCB= 度;
(2)過(guò)點(diǎn)A作直線(xiàn)直線(xiàn)MN∥DE,若∠ACD=20°,試求∠CAM的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖 AB=AC,CD⊥AB于D,BE⊥AC于E,BE與CD相交于點(diǎn)O.
(1)求證AD=AE;
(2)連接OA,BC,試判斷直線(xiàn)OA,BC的關(guān)系并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,A、B、C分別為數(shù)軸上的三點(diǎn),A點(diǎn)對(duì)應(yīng)的數(shù)為60,B點(diǎn)在A(yíng)點(diǎn)的左側(cè),并且與A點(diǎn)的距離為30,C點(diǎn)在B點(diǎn)左側(cè),C點(diǎn)到A點(diǎn)距離是B點(diǎn)到A點(diǎn)距離的4倍.
(1)求出數(shù)軸上B點(diǎn)對(duì)應(yīng)的數(shù)及AC的距離.
(2)點(diǎn)P從A點(diǎn)出發(fā),以3單位/秒的速度向終點(diǎn)C運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒.
①當(dāng)P點(diǎn)在A(yíng)B之間運(yùn)動(dòng)時(shí),則BP= .(用含t的代數(shù)式表示)
②P點(diǎn)自A點(diǎn)向C點(diǎn)運(yùn)動(dòng)過(guò)程中,何時(shí)P,A,B三點(diǎn)中其中一個(gè)點(diǎn)是另外兩個(gè)點(diǎn)的中點(diǎn)?求出相應(yīng)的時(shí)間t.
③當(dāng)P點(diǎn)運(yùn)動(dòng)到B點(diǎn)時(shí),另一點(diǎn)Q以5單位/秒的速度從A點(diǎn)出發(fā),也向C點(diǎn)運(yùn)動(dòng),點(diǎn)Q到達(dá)C點(diǎn)后立即原速返回到A點(diǎn),那么Q點(diǎn)在往返過(guò)程中與P點(diǎn)相遇幾次?直.接.寫(xiě).出.相遇時(shí)P點(diǎn)在數(shù)軸上對(duì)應(yīng)的數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線(xiàn)AB∥DF,∠D+∠B=180°,
(1)求證:DE∥BC;
(2)如果∠AMD=75°,求∠AGC的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com