【題目】已知,如圖,A、B、C分別為數(shù)軸上的三點(diǎn),A點(diǎn)對應(yīng)的數(shù)為60,B點(diǎn)在A點(diǎn)的左側(cè),并且與A點(diǎn)的距離為30,C點(diǎn)在B點(diǎn)左側(cè),C點(diǎn)到A點(diǎn)距離是B點(diǎn)到A點(diǎn)距離的4倍.
(1)求出數(shù)軸上B點(diǎn)對應(yīng)的數(shù)及AC的距離.
(2)點(diǎn)P從A點(diǎn)出發(fā),以3單位/秒的速度向終點(diǎn)C運(yùn)動,運(yùn)動時(shí)間為t秒.
①當(dāng)P點(diǎn)在AB之間運(yùn)動時(shí),則BP= .(用含t的代數(shù)式表示)
②P點(diǎn)自A點(diǎn)向C點(diǎn)運(yùn)動過程中,何時(shí)P,A,B三點(diǎn)中其中一個(gè)點(diǎn)是另外兩個(gè)點(diǎn)的中點(diǎn)?求出相應(yīng)的時(shí)間t.
③當(dāng)P點(diǎn)運(yùn)動到B點(diǎn)時(shí),另一點(diǎn)Q以5單位/秒的速度從A點(diǎn)出發(fā),也向C點(diǎn)運(yùn)動,點(diǎn)Q到達(dá)C點(diǎn)后立即原速返回到A點(diǎn),那么Q點(diǎn)在往返過程中與P點(diǎn)相遇幾次?直.接.寫.出.相遇時(shí)P點(diǎn)在數(shù)軸上對應(yīng)的數(shù)
【答案】(1)30,120(2)①30﹣3t②5或20③﹣15或﹣48
【解析】
(1)根據(jù)A點(diǎn)對應(yīng)的數(shù)為60,B點(diǎn)在A點(diǎn)的左側(cè),AB=30求出B點(diǎn)對應(yīng)的數(shù);根據(jù)AC=4AB求出AC的距離;
(2)①當(dāng)P點(diǎn)在AB之間運(yùn)動時(shí),根據(jù)路程=速度×?xí)r間求出AP=3t,根據(jù)BP=AB﹣AP求解;
②分P點(diǎn)是A、B兩個(gè)點(diǎn)的中點(diǎn);B點(diǎn)是A、P兩個(gè)點(diǎn)的中點(diǎn)兩種情況討論即可;
③根據(jù)P、Q兩點(diǎn)的運(yùn)動速度與方向可知Q點(diǎn)在往返過程中與P點(diǎn)相遇2次.設(shè)Q點(diǎn)在往返過程中經(jīng)過x秒與P點(diǎn)相遇.第一次相遇是點(diǎn)Q從A點(diǎn)出發(fā),向C點(diǎn)運(yùn)動的途中.根據(jù)AQ﹣BP=AB列出方程;第二次相遇是點(diǎn)Q到達(dá)C點(diǎn)后返回到A點(diǎn)的途中.根據(jù)CQ+BP=BC列出方程,進(jìn)而求出P點(diǎn)在數(shù)軸上對應(yīng)的數(shù).
(1)∵A點(diǎn)對應(yīng)的數(shù)為60,B點(diǎn)在A點(diǎn)的左側(cè),并且與A點(diǎn)的距離為30,
∴B點(diǎn)對應(yīng)的數(shù)為60﹣30=30;
∵C點(diǎn)到A點(diǎn)距離是B點(diǎn)到A點(diǎn)距離的4倍,
∴AC=4AB=4×30=120;
(2)①當(dāng)P點(diǎn)在AB之間運(yùn)動時(shí),
∵AP=3t,
∴BP=AB﹣AP=30﹣3t.
故答案為30﹣3t;
②當(dāng)P點(diǎn)是A、B兩個(gè)點(diǎn)的中點(diǎn)時(shí),AP=AB=15,
∴3t=15,解得t=5;
當(dāng)B點(diǎn)是A、P兩個(gè)點(diǎn)的中點(diǎn)時(shí),AP=2AB=60,
∴3t=60,解得t=20.
故所求時(shí)間t的值為5或20;
③相遇2次.設(shè)Q點(diǎn)在往返過程中經(jīng)過x秒與P點(diǎn)相遇.
第一次相遇是點(diǎn)Q從A點(diǎn)出發(fā),向C點(diǎn)運(yùn)動的途中.
∵AQ﹣BP=AB,
∴5x﹣3x=30,
解得x=15,
此時(shí)P點(diǎn)在數(shù)軸上對應(yīng)的數(shù)是:60﹣5×15=﹣15;
第二次相遇是點(diǎn)Q到達(dá)C點(diǎn)后返回到A點(diǎn)的途中.
∵CQ+BP=BC,
∴5(x﹣24)+3x=90,
解得x=,
此時(shí)P點(diǎn)在數(shù)軸上對應(yīng)的數(shù)是:30﹣3×=﹣48.
綜上,相遇時(shí)P點(diǎn)在數(shù)軸上對應(yīng)的數(shù)為﹣15或﹣48.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把寬為2cm 的刻度尺在圓O上移動,當(dāng)刻度尺的一邊EF與圓O相切于A時(shí),另一邊與圓的兩個(gè)交點(diǎn)處的度刻恰好為“2”(C點(diǎn))和“8”(B點(diǎn))(單位:cm ),則該圓的半徑是( )
A.3 cm
B.3.25 cm
C.2 cm
D.4 cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在直角三角形ABC中,∠ACB=90°,D是AB上一點(diǎn),且∠ACD=∠B.
(1)如圖1,求證:CD⊥AB;
(2)將△ADC沿CD所在直線翻折,A點(diǎn)落在BD邊所在直線上,記為A′點(diǎn).
①如圖2,若∠B=34°,求∠A′CB的度數(shù);
②若∠B=n°,請直接寫出∠A′CB的度數(shù)(用含n的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=90°,點(diǎn)D是直線AB上的一動點(diǎn)(不和A、B重合),BE⊥CD于E,交直線AC于F
(1)點(diǎn)D在邊AB上時(shí),試探究線段BD、AB和AF的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)點(diǎn)D在AB的延長線或反向延長線上時(shí),(1)中的結(jié)論是否成立?若不成立,請寫出正確結(jié)論并證明。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知線段MN=8,C是線段MN上一動點(diǎn),在MN的同側(cè)分別作等邊△CMD和等邊△CNE.
(1)如圖①,連接DN與EM,兩條線段相交于點(diǎn)H,求證ME=DN,并求∠DHM的度數(shù);
(2)如圖②,過點(diǎn)D、E分別作線段MN的垂線,垂足分別為F、G,問:在點(diǎn)C運(yùn)動過程中,DF+EG的長度是否為定值,如果是,請求出這個(gè)定值,如果不是請說明理由;
(3)當(dāng)點(diǎn)C由點(diǎn)M移到點(diǎn)N時(shí),點(diǎn)H移到的路徑長度為(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校240名學(xué)生參加植樹活動,要求每人植樹4~7棵,活動結(jié)束后抽查了20名學(xué)生每人的植樹量,并分為四類:A類4棵、B類5棵、C類6棵、D類7棵,將各類的人數(shù)繪制成如圖所示不完整的條形統(tǒng)計(jì)圖,回答下列問題:
(1)補(bǔ)全條形圖;
(2)寫出這20名學(xué)生每人植樹量的眾數(shù)和中位數(shù);
(3)估計(jì)這240名學(xué)生共植樹多少棵?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,動點(diǎn)M、N同時(shí)從原點(diǎn)出發(fā)沿?cái)?shù)軸做勻速運(yùn)動,己知動點(diǎn)M、N的運(yùn)動速度比是1:2(速度單位:1個(gè)單位長度/秒),設(shè)運(yùn)動時(shí)間為t秒.
(1)若動點(diǎn)M向數(shù)軸負(fù)方向運(yùn)動,動點(diǎn)N向數(shù)軸正方向運(yùn)動,當(dāng)t=2秒時(shí),動點(diǎn)M運(yùn)動到A點(diǎn),動點(diǎn)N運(yùn)動到B點(diǎn),且AB=12(單位長度).
①在直線l上畫出A、B兩點(diǎn)的位置,并回答:點(diǎn)A運(yùn)動的速度是 (單位長度/秒);點(diǎn)B運(yùn)動的速度是 (單位長度/秒).
②若點(diǎn)P為數(shù)軸上一點(diǎn),且PA﹣PB=OP,求的值;
(2)由(1)中A、B兩點(diǎn)的位置開始,若M、N同時(shí)再次開始按原速運(yùn)動,且在數(shù)軸上的運(yùn)動方向不限,再經(jīng)過幾秒,MN=4(單位長度)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)依次為A(﹣1,2),B(﹣4,1),C(﹣2,﹣2).
(1)請?jiān)谶@個(gè)坐標(biāo)系中作出△ABC關(guān)于y軸對稱的△A1B1C1.
(2)分別寫出點(diǎn)A1、B1、C1的坐標(biāo).
(3)求△A1B1C1的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AD⊥BC,EF⊥BC,垂足分別為D、F,∠2+∠3=180°,試說明:∠GDC=∠B.請補(bǔ)充說明過程,并在括號內(nèi)填上相應(yīng)的理由.
解:∵AD⊥BC,EF⊥BC(已知)
∴∠ADB=∠EFB=90° ,
∴EF∥AD( ),
∴ +∠2=180°( ).
又∵∠2+∠3=180°(已知),
∴∠1=∠3( ),
∴AB∥ ( ),
∴∠GDC=∠B( ).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com