【題目】如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結(jié)論的是_____.
【答案】①②③
【解析】
根據(jù)翻折變換的性質(zhì)和正方形的性質(zhì)可證Rt△ABG≌Rt△AFG;在直角△ECG中,根據(jù)勾股定理可證BG=GC;通過(guò)證明∠AGB=∠AGF=∠GFC=∠GCF,由平行線的判定可得AG∥CF;由于S△FGC=S△GCE-S△FEC,求得面積比較即可.
①正確.
理由:
∵AB=AD=AF,AG=AG,∠B=∠AFG=90°,
∴Rt△ABG≌Rt△AFG(HL);
②正確.
理由:
EF=DE=CD=2,設(shè)BG=FG=x,則CG=6-x.
在直角△ECG中,根據(jù)勾股定理,得(6-x)2+42=(x+2)2,
解得x=3.
∴BG=3=6-3=GC;
③正確.
理由:
∵CG=BG,BG=GF,
∴CG=GF,
∴△FGC是等腰三角形,∠GFC=∠GCF.
又∵Rt△ABG≌Rt△AFG;
∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=180°-∠FGC=∠GFC+∠GCF=2∠GFC=2∠GCF,
∴∠AGB=∠AGF=∠GFC=∠GCF,
∴AG∥CF;
④錯(cuò)誤.
理由:
∵S△GCE=GCCE=×3×4=6
∵GF=3,EF=2,△GFC和△FCE等高,
∴S△GFC:S△FCE=3:2,
∴S△GFC=×6=≠3.
故④不正確.
∴正確的個(gè)數(shù)有3個(gè): ①②③.
故答案為:①②③
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A、D、B、E四點(diǎn)在同一條直線上,AD=BE,BC∥EF,BC=EF.
(1)求證:AC=DF;
(2)若CD為∠ACB的平分線,∠A=25°,∠E=71°,求∠CDF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】11月5日晚在西昌衛(wèi)星發(fā)射中心成功以“一箭雙星”方式發(fā)射第24顆、第25顆北斗導(dǎo)航衛(wèi)星,“中國(guó)的北斗,世界的北斗”,北斗衛(wèi)星系統(tǒng)是由中國(guó)自主研發(fā)的全球領(lǐng)先的衛(wèi)星導(dǎo)航系統(tǒng),這套天羅地網(wǎng)在不久的將來(lái)會(huì)造福人類、服務(wù)全球.第三期北斗系統(tǒng)總項(xiàng)目預(yù)算國(guó)撥總投資為240億元,分技術(shù)、基建、設(shè)備三個(gè)項(xiàng)目投資,基建項(xiàng)目投資占技術(shù)項(xiàng)目投資的,設(shè)備項(xiàng)目投資比技術(shù)項(xiàng)目投資少40%,由于物價(jià)的上漲,總項(xiàng)目的實(shí)際總投資隨之增長(zhǎng),基建項(xiàng)目投資的增長(zhǎng)率是技術(shù)項(xiàng)目投資增長(zhǎng)率的2.5倍,設(shè)備項(xiàng)目投資的增長(zhǎng)率達(dá)到基建項(xiàng)目投資增長(zhǎng)率的2倍.
(1)三個(gè)項(xiàng)目的預(yù)算投資分別是多少億元?
(2)由于技術(shù)工人齊心協(xié)力,整套導(dǎo)航系統(tǒng)提前半年交付使用,導(dǎo)航系統(tǒng)每月可供1000萬(wàn)臺(tái)導(dǎo)航設(shè)備使用,每臺(tái)導(dǎo)航設(shè)備的平均月使用費(fèi)為40元,這樣,可將提前半年使用的收益的70%用于該項(xiàng)目的實(shí)際投資,減少了國(guó)撥投資,使預(yù)算國(guó)撥總投資減少的百分率與技術(shù)項(xiàng)目投資的增長(zhǎng)率相同,問(wèn)第三期北斗系統(tǒng)工程的實(shí)際總投資是多少億元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,E是BC的中點(diǎn),F是CD上一點(diǎn),且CF=CD,下列結(jié)論中正確的個(gè)數(shù)為( )
①∠BAE=30°;②△ABE∽△AEF;③AE⊥EF;④△ADF∽△ECF.
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知和為等腰三角形,,,,點(diǎn)在上,點(diǎn)在射線上.
(1)如圖1,若∠BAC=60°,點(diǎn)F與點(diǎn)C重合,求證:AF=AE+AD;
(2)如圖2,若AD=AB,求證:AF=AE+BC. .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知和為等腰三角形,,,,點(diǎn)在上,點(diǎn)在射線上.
(1)如圖1,若∠BAC=60°,點(diǎn)F與點(diǎn)C重合,求證:AF=AE+AD;
(2)如圖2,若AD=AB,求證:AF=AE+BC. .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,AB=2,∠DAB=60°,點(diǎn)E是AD邊的中點(diǎn),點(diǎn)M是AB邊上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A重合),延長(zhǎng)ME交CD的延長(zhǎng)線于點(diǎn)N,連接MD,AN.
(1)求證:四邊形AMDN是平行四邊形.
(2)當(dāng)AM的值為何值時(shí),四邊形AMDN是矩形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(2,0),以線段OA為邊在第四象限內(nèi)作等邊三角形△AOB,點(diǎn)C為x正半軸上一動(dòng)點(diǎn)(OC>2),連接BC,以線段BC為邊在第四象限內(nèi)作等邊三角形△CBD連接DA并延長(zhǎng)交y軸于點(diǎn)E.
(1)在點(diǎn)C的運(yùn)動(dòng)過(guò)程中,△OBC和△ABD全等嗎?請(qǐng)說(shuō)明理由;
(2)在點(diǎn)C的運(yùn)動(dòng)過(guò)程中,∠CAD的度數(shù)是否會(huì)變化?如果不變,請(qǐng)求出∠CAD的度數(shù);如果變化請(qǐng)說(shuō)明理由;
(3)探究當(dāng)點(diǎn)C運(yùn)動(dòng)到什么位置時(shí),以A,E,C為頂點(diǎn)的三角形是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某園林專業(yè)戶計(jì)劃投資種植花卉及樹(shù)木,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),種植樹(shù)木的利潤(rùn)y1與投資量x成正比例關(guān)系,種植花卉的利潤(rùn)y2與投資量x的平方成正比例關(guān)系,并得到了表格中的數(shù)據(jù).
投資量x(萬(wàn)元) | 2 |
種植樹(shù)木利潤(rùn)y1(萬(wàn)元) | 4 |
種植花卉利潤(rùn)y2(萬(wàn)元) | 2 |
(1)分別求出利潤(rùn)y1與y2關(guān)于投資量x的函數(shù)關(guān)系式;
(2)如果這位專業(yè)戶以8萬(wàn)元資金投入種植花卉和樹(shù)木,設(shè)他投入種植花卉金額m萬(wàn)元,種植花卉和樹(shù)木共獲利利潤(rùn)W萬(wàn)元,直接寫(xiě)出W關(guān)于m的函數(shù)關(guān)系式,并求他至少獲得多少利潤(rùn)?他能獲取的最大利潤(rùn)是多少?
(3)若該專業(yè)戶想獲利不低于22萬(wàn),在(2)的條件下,直接寫(xiě)出投資種植花卉的金額m的范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com