【題目】在工程實施過程中,某工程隊接受一項開挖水渠的工程,所需天數(shù)y()與每天完成工程量x米的函數(shù)關系圖象如圖所示,是雙曲線的一部分.

(1)請根據(jù)題意,求yx之間的函數(shù)表達式;

(2)若該工程隊有2臺挖掘機,每臺挖掘機每天能夠開挖水渠30米,問該工程隊需要用多少天才能完成此項任務?

(3)如果為了防汛工作的緊急需要,必須在10天內完成任務,那么每天至少要完成多少米?

【答案】(1)y(2)2臺挖掘機需要20天;(3)每天至少要完成120m

【解析】

(1)根據(jù)圖像找到反比例圖象上點的坐標,代入反比例函數(shù)的解析式即可求出答案;

(2)由第一問可計算出工程的總工作量,再根據(jù)題目中的工作效率,可計算出所需的工作時間;

(3)第一問中可計算出工作的總量,再由條件中的工作時間,可計算出工程所需的工作效率.

解:(1)y

∵點(24,50)在其圖象上,

∴所求函數(shù)表達式為y;

(2)由圖象,知共需開挖水渠24×501200(m);

2臺挖掘機需要1200÷(2×30)20天;

(3)1200÷10120(m)

故每天至少要完成120m

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=AC,以AB為直徑的OAC邊于點D,過點CCPAB,CP上截取CF=CD連接BF

(1)求證:直線BFO的切線;

(2)AB=5,BC=,求線段CDBF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yax2+bx+cx軸相交于A、B兩點,點A在點B左側,頂點在折線MPN上移動,它們的坐標分別為M(﹣14)、P34)、N31).若在拋物線移動過程中,點A橫坐標的最小值為﹣3,則ab+c的最小值是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P點是某海域內的一座燈塔的位置,船A停泊在燈塔P的南偏東53°方向的50海里處,船B位于船A的正西方向且與燈塔P相距20海里.(本題參考數(shù)據(jù)sin53°≈0.80cos53°≈0.60,tan53°≈1.33)

(1)試問船B在燈塔P的什么方向?

(2)求兩船相距多少海里?(結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABCD,ACBD相交于點E,點F在線段BC上,,

(1)求證:ABEF;

(2)SABESEBCSECD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB6,BC8.動點P從點A出發(fā)沿AC向終點C運動,同時動點Q從點B出發(fā)沿BA向點A運動,到達A點時停止運動.點P也同時停止.點PQ運動速度均為每秒1個單位長度,連接PQ,設運動時間為t(t0)秒.

(1)當點QB點向A點運動時(未到達A),

①當t_____PQBC

②求△APQ的面積S關于t的函數(shù)關系式,并寫出t的取值范圍;

(2)伴隨著P,Q兩點的運動,線段PQ的垂直平分線為l

①當l經(jīng)過點A時,射線QPAD于點E,求此時的t的值和AE的長;

②當l經(jīng)過點B時,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知一次函數(shù)y=2x﹣4與反比例函數(shù)y=的圖象相交于點A(a,2),與x軸相交于點B.

(1)求a和k的值;

(2)以AB為邊作菱形ABCD,使點C在x軸正半軸上,點D在第一象限,求菱形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知蓄電池的電壓為定值,使用蓄電池時,電流I(單位:A)與電阻R(單位:Ω)是反比例函數(shù)關系,它的圖象如圖所示.

(1)請寫出這個反比例函數(shù)的解析式;

(2)蓄電池的電壓是多少?

(3)完成下表:

(4)如果以此蓄電池為電源的用電器的限制電流不能超過10 A,那么用電器可變電阻應控制在什么范圍?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一艘輪船向正東方向航行,在A處測得燈塔PA的北偏東60°方向,航行40海里到達B處,此時測得燈塔PB的北偏東15°方向.

(1)求燈塔P到輪船航線的距離PD;(結果保留根號)

(2)當輪船從B處繼續(xù)向東航行時,一艘快艇從燈塔P處同時前往D處,盡管快艇速度是輪船速度的2倍,但快艇還是比輪船晚15分鐘到達D處,求輪船每小時航行多少海里.(結果精確到1海里,參考數(shù)據(jù)≈1.7)

查看答案和解析>>

同步練習冊答案