【題目】若﹣x3ya與xby是同類項,則a+b的值為( )
A.5
B.4
C.3
D.2

【答案】B
【解析】解:依據(jù)同類項的定義可知a=1,b=3,
∴a+b=4.
故選:B.
依據(jù)同類項的定義可得到a、b的值,然后再代入計算即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線與x軸、y軸分別交于點(diǎn)A和點(diǎn)B,點(diǎn)C、D分別為線段AB、OB的中點(diǎn),點(diǎn)P為OA上一動點(diǎn),PC+PD值最小時點(diǎn)P的坐標(biāo)為(

A.(﹣3,0) B.(﹣6,0) C.(,0) D.(,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系內(nèi),點(diǎn)M(a+3,a-2)在y軸上,則點(diǎn)M的坐標(biāo)是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算題:
(1)25÷5×(﹣ )÷(﹣
(2)( + )×(﹣18)
(3)﹣72+2×(﹣3)2+(﹣6)÷(﹣ 2
(4)(﹣3)3﹣[3+0.4×(﹣1 )]÷(﹣2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,地面BD上兩根等長立柱AB,CD之間懸掛一根近似成拋物線的繩子.

(1)求繩子最低點(diǎn)離地面的距離;

(2)因?qū)嶋H需要,在離AB為3米的位置處用一根立柱MN撐起繩子(如圖2),使左邊拋物線F1的最低點(diǎn)距MN為1米,離地面1.8米,求MN的長;

(3)將立柱MN的長度提升為3米,通過調(diào)整MN的位置,使拋物線F2對應(yīng)函數(shù)的二次項系數(shù)始終為,設(shè)MN離AB的距離為m,拋物線F2的頂點(diǎn)離地面距離為k,當(dāng)2≤k≤2.5時,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知數(shù)軸上的點(diǎn)A表示的數(shù)為6,點(diǎn)B表示的數(shù)為﹣4,點(diǎn)C到點(diǎn)A、點(diǎn)B的距離相等,動點(diǎn)P從點(diǎn)B出發(fā),以每秒2個單位長度的速度沿數(shù)軸向右勻速運(yùn)動,設(shè)運(yùn)動時間為 x ( x 大于0)秒.

(1)點(diǎn)C表示的數(shù)是
(2)當(dāng) 秒時,點(diǎn)P到達(dá)點(diǎn)A處?
(3)運(yùn)動過程中點(diǎn)P表示的數(shù)是(用含字母 的式子表示);
(4)當(dāng)P,C之間的距離為2個單位長度時,求 x 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C為半圓內(nèi)一點(diǎn),O為圓心,直徑AB長為2cm,∠BOC=60°,∠BCO=90°,將△BOC繞圓心O逆時針旋轉(zhuǎn)至△B′OC′,點(diǎn)C′在OA上,則邊BC掃過區(qū)域(圖中陰影部分)的面積為 cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,面積為6的平行四邊形紙片ABCD中,AB=3,∠BAD=45°,按下列步驟進(jìn)行裁剪和拼圖.

第一步:如圖①,將平行四邊形紙片沿對角線BD剪開,得到△ABD和△BCD紙片,再將△ABD紙片沿AE剪開(E為BD上任意一點(diǎn)),得到△ABE和△ADE紙片;

第二步:如圖②,將△ABE紙片平移至△DCF處,將△ADE紙片平移至△BCG處;

第三步:如圖③,將△DCF紙片翻轉(zhuǎn)過來使其背面朝上置于△PQM處(邊PQ與DC重合,△PQM和△DCF在DC同側(cè)),將△BCG紙片翻轉(zhuǎn)過來使其背面朝上置于△PRN處,(邊PR與BC重合,△PRN和△BCG在BC同側(cè)).

則由紙片拼成的五邊形PMQRN中,對角線MN長度的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運(yùn)算中,正確的是( 。
A.2+ =2
B.(x+2y)2=x2+4y2
C.x8÷x4=x2
D.

查看答案和解析>>

同步練習(xí)冊答案