【題目】H9N2型禽流感病毒的病毒粒子的直徑在0.00008毫米~0.00012毫米之間,數(shù)據(jù)0.00012用科學(xué)記數(shù)法可以表示為_____

【答案】1.2×104

【解析】

根據(jù)科學(xué)記數(shù)法的表示方法解答即可.

解:數(shù)據(jù)0.00012用科學(xué)記數(shù)法可以表示為1.2×104

故答案為:1.2×104

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小慧根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y=|x﹣1|的圖象與性質(zhì)進行了探究.下面是小慧的探究過程,請補充完成:

(1)函數(shù)y=|x﹣1|的自變量x的取值范圍是   ;

(2)列表,找出y與x的幾組對應(yīng)值.

x

﹣1

0

1

2

3

y

b

1

0

1

2

其中,b=   ;

(3)在平面直角坐標系xOy中,描出以上表中各對對應(yīng)值為坐標的點,并畫出該函數(shù)的圖象;

(4)寫出該函數(shù)的一條性質(zhì):   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列事件中,屬于必然事件的是

A. 任意投擲一枚硬幣,落地后正面朝上;

B. 2019年春節(jié)當天北京將下雪;

C. 弟弟的年齡比哥哥的年齡;

D. 明天早晨,大家能看到太陽從西方冉冉升起.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,對稱軸為直線x=2的拋物線y=x2+bx+c與x軸交于點A和點B,與y軸交于點C,且點A的坐標為(﹣1,0)

(1)求拋物線的解析式;

(2)直接寫出B、C兩點的坐標;

(3)求過O,B,C三點的圓的面積.(結(jié)果用含π的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是某同學(xué)對多項式(x2-4x+2)(x2-4x+6)+4因式分解的過程.

解:設(shè)x2-4x=y,

則原式=(y+2)(y+6)+4(第一步)

=y2+8y+16(第二步)

=(y+4)2第三步

=(x2-4x+4)2第四步

解答下列問題:

(1)該同學(xué)第二步到第三步運用了因式分解的方法是(

A.提取公因式 B.平方差公式 C.兩數(shù)和的完全平方公式 D.兩數(shù)差的完全平方公式

(2)該同學(xué)因式分解的結(jié)果是否徹底?(填徹底不徹底”).若不徹底,請直接寫出因式分解的最后結(jié)果;

(3)請你模仿以上方法嘗試對多項式(x2-2x)(x2-2x+2)+1進行因式分解.

【答案】(1)C;(2)不徹底,(x-2)4;(3)(x-1)4.

【解析】試題分析:(1)從二步到第三步運用了完全平方和公式;(2)x2-4x+4可運用完全平方差公式因式分解;(3)設(shè)x2-2x=y,將(x2-2x)(x2-2x+2)+1變形成y(y+2)+1的形式,再進行因式分解;

試題解析:

(1)運用了C,兩數(shù)和的完全平方公式;

(2)不徹底;

(x2-4x+4)2=(x-2)4

(3)設(shè)x2-2x=y.

(x2-2x)(x2-2x+2)+1

=y(y+2)+1

=y2+2y+1

=(y+1)2…………………………7

=(x2-2x+1)2

=(x-1)4

型】解答
結(jié)束】
24

【題目】乘法公式的探究及應(yīng)用.

探究問題

1是一張長方形紙條,將其剪成長短兩條后剛好能拼成圖2.

1) (2

1)圖1中長方形紙條的面積可表示為_______(寫成多項式乘法的形式).

2)拼成的圖2陰影部分的面積可表示為________(寫成兩數(shù)平方差的形式).

3)比較兩圖陰影部分的面積,可以得到乘法公式____.

結(jié)論運用

4運用所得的公式計算:

=________ =________.

拓展運用:

5)計算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,BPC是等邊三角形,BPCP的延長線分別交AD于點E、F,連接BDDP,BDCF相交于點H.給出下列結(jié)論:

ABE≌△DCF;DP2=PHPB;

其中正確的是____________.(寫出所有正確結(jié)論的序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知點A(-2,0),B(0,3),O 為原點.

(1)求三角線 AOB 的面積;

(2)將線段 AB 沿 x 軸向右平移4個單位,得線段A′B′,x軸上有一點C滿足三角形A′B′C的面積為 9 ,求點C的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程

1(配方法)

23x2+5(2x+1)=0(公式法)

3)用適當?shù)姆椒ń夥匠蹋?/span> .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:(1) (2)

(3) (4)

查看答案和解析>>

同步練習(xí)冊答案