【題目】越野自行車(chē)是中學(xué)生喜愛(ài)的交通工具,市場(chǎng)巨大競(jìng)爭(zhēng)也激烈.某品牌經(jīng)銷(xiāo)商經(jīng)營(yíng)的A型車(chē)去年銷(xiāo)售總額為5萬(wàn)元,今年每輛售價(jià)比去年降低400元,若賣(mài)出的數(shù)量相同,銷(xiāo)售總額將比去年減少20%B型車(chē)是今年增加供應(yīng)市場(chǎng)的,功能多售價(jià)也高些.

A、B兩種型號(hào)車(chē)今年的進(jìn)貨和銷(xiāo)售價(jià)格如下表:

A型車(chē)

B型車(chē)

進(jìn)貨價(jià)

1100/

1400/

銷(xiāo)售價(jià)

x/

2000/

1)求今年A型車(chē)每輛銷(xiāo)售價(jià)x的值;

2)該品牌經(jīng)銷(xiāo)商計(jì)劃新進(jìn)一批A型車(chē)和新款B型車(chē)共60輛,且B型車(chē)的進(jìn)貨數(shù)量不超過(guò)A型車(chē)數(shù)量的兩倍,請(qǐng)問(wèn)應(yīng)如何安排兩種型號(hào)車(chē)的進(jìn)貨數(shù)量,才能使這批車(chē)售出后獲利最多?

【答案】11600;(2)當(dāng)車(chē)行新進(jìn)A型車(chē)20輛,B型車(chē)40輛時(shí),這批車(chē)獲利最多

【解析】

1)設(shè)今年A型車(chē)每輛售價(jià)x元,則去年售價(jià)每輛為(x+400)元,由賣(mài)出的數(shù)量相同建立分式方程求出其解即可;
2)設(shè)今年新進(jìn)A型車(chē)a輛,則B型車(chē)(60-a)輛,獲利y元,由條件表示出ya之間的關(guān)系式,由a的取值范圍就可以求出y的最大值.

1)今年A型車(chē)每輛售價(jià)x元,則去年每輛售價(jià)(x400)元.

由題意得:

解得:x1600

經(jīng)檢驗(yàn),x1600是所列方程的根.

x1600

2)設(shè)車(chē)行新進(jìn)A型車(chē)a輛,則B型車(chē)為(60a)輛,獲利y元.

由題意,得:

y=(16001100a+(20001400)(60a),

y=-100a36000

B型車(chē)的進(jìn)貨數(shù)量不超過(guò)A型車(chē)數(shù)量的2倍.

∴60a≤2a

a≥20

ya的關(guān)系式可知,

100<0,y的值隨a的值增大而減。

a20時(shí),y的值最大,

∴60a602040(輛),

當(dāng)車(chē)行新進(jìn)A型車(chē)20輛,B型車(chē)40輛時(shí),這批車(chē)獲利最多.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】水產(chǎn)公司有一種海產(chǎn)品共2104千克,為尋求合適的銷(xiāo)售價(jià)格,進(jìn)行了8天試銷(xiāo),試銷(xiāo)情況如下:

第1天

第2天

第3天

第4天

第5天

第6天

第7天

第8天

售價(jià)(元/千克)

400

300

250

240

200

150

125

120

銷(xiāo)售量(千克)

30

40

48

50

60

80

96

100

觀察表中數(shù)據(jù),發(fā)現(xiàn)可以用反比例函數(shù)刻畫(huà)這種海產(chǎn)品每天的銷(xiāo)售量(千克)與銷(xiāo)售價(jià)格(/千克)之間的關(guān)系.現(xiàn)假定在這批海產(chǎn)品的銷(xiāo)售中,每天的銷(xiāo)售量(千克)與銷(xiāo)售價(jià)格(/千克)之間都滿(mǎn)足這一關(guān)系.

1)寫(xiě)出這個(gè)反比例函數(shù)的解析式;

2)在試銷(xiāo)8天后,公司決定將這種海產(chǎn)品的銷(xiāo)售價(jià)格定為150/千克,并且每天都按這個(gè)價(jià)格銷(xiāo)售,那么余下的這些海產(chǎn)品預(yù)計(jì)再用多少天可以全部售出?

3)在按(2)中定價(jià)繼續(xù)銷(xiāo)售15天后,公司發(fā)現(xiàn)剩余的這些海產(chǎn)品必須在不超過(guò)2天內(nèi)全部售出,此時(shí)需要重新確定一個(gè)銷(xiāo)售價(jià)格,使后面兩天都按新的價(jià)格銷(xiāo)售,那么新確定的價(jià)格最高不超過(guò)每千克多少元才能完成銷(xiāo)售任務(wù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線AB經(jīng)過(guò)⊙O上的點(diǎn)C,并且OAOB,CACB,⊙O交直線OBE,D,連接ECCD

1)求證:直線AB是⊙O的切線;

2)試猜想BC,BD,BE三者之間的等量關(guān)系,并加以證明;

3)若tanCED,⊙O的半徑為3,求OA的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某小區(qū)有一塊長(zhǎng)為30 m,寬為24 m的矩形空地,計(jì)劃在其中修建兩塊相同的矩形綠地,它們的面積之和為480 m2,兩塊綠地之間及周邊有寬度相等的人行通道,則人行通道的寬度為________m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為宣傳普及新冠肺炎防治知識(shí),引導(dǎo)學(xué)生做好防控.某校舉行了主題為防控新冠,從我做起的線上知識(shí)競(jìng)賽活動(dòng),測(cè)試內(nèi)容為20道判斷題,每道題5分,滿(mǎn)分100.為了解八、九年級(jí)學(xué)生此次競(jìng)賽成績(jī)的情況,分別隨機(jī)在八、九年級(jí)各抽取了20名參賽學(xué)生的成績(jī).已知抽查得到的八年級(jí)的數(shù)據(jù)如下:

80,95,75,75,9075,80,6580,85,7565,70,65,85,70,9580,7580.

為了便于分析數(shù)據(jù),統(tǒng)計(jì)員對(duì)八年級(jí)數(shù)據(jù)進(jìn)行了整理,得到了表一:

成績(jī)等級(jí)

分?jǐn)?shù)(單位:分)

學(xué)生數(shù)

5

2

八、九年級(jí)成績(jī)的平均數(shù)、中位數(shù)、優(yōu)秀率如下:(分?jǐn)?shù)80分以上、不含80分為優(yōu)秀)

年級(jí)

平均數(shù)

中位數(shù)

優(yōu)秀率

八年級(jí)

77.5

九年級(jí)

76

82.5

50%

1)根據(jù)題目信息填空:________,________,________;

2)八年級(jí)王宇和九年級(jí)程義的分?jǐn)?shù)都為80分,請(qǐng)判斷王宇、程義在各自年級(jí)的排名哪位更靠前?請(qǐng)簡(jiǎn)述你的理由;

3)八年級(jí)被抽取的20名學(xué)生中,獲得等和等的學(xué)生將被隨機(jī)選出2名,協(xié)助學(xué)校普及新冠肺炎防控知識(shí),求這兩人都為等的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在上依次有三點(diǎn),的延長(zhǎng)線交過(guò)點(diǎn)的延長(zhǎng)線于于點(diǎn)

1)求證:四邊形是菱形;

2)連接

當(dāng) 時(shí),點(diǎn)為弧的中點(diǎn);

,則的半徑是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角△BAD中延長(zhǎng)斜邊BD到點(diǎn)C,使,若,則的值為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于(x1,0),且﹣1<x1<0,對(duì)稱(chēng)軸x=1.如圖所示,有下列5個(gè)結(jié)論:①abc>0;b<a+c;4a+2b+c>0;2c<3b;a+b>m(am+b)(m≠1的實(shí)數(shù)).其中所有結(jié)論正確的是______(填寫(xiě)番號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+c經(jīng)過(guò)點(diǎn)A(5,)、點(diǎn)B(9,﹣10),與y軸交于點(diǎn)C,點(diǎn)P是直線AC上方拋物線上的一個(gè)動(dòng)點(diǎn);

(1)求拋物線對(duì)應(yīng)的函數(shù)解析式;

(2)過(guò)點(diǎn)P且與y軸平行的直線l與直線BC交于點(diǎn)E,當(dāng)四邊形AECP的面積最大時(shí),求點(diǎn)P的坐標(biāo);

(3)當(dāng)∠PCB=90°時(shí),作∠PCB的角平分線,交拋物線于點(diǎn)F.

①求點(diǎn)P和點(diǎn)F的坐標(biāo);

②在直線CF上是否存在點(diǎn)Q,使得以F、P、Q為頂點(diǎn)的三角形與BCF相似,若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案