【題目】已知△ABC中,AC=BC,∠C=100°,AD平分∠BAC交BC于D,點E為AB上一點,且∠EDB=∠B.求證:AB=AD+CD.
【答案】見解析
【解析】
由∠C=100°,AC=BC得到∠B=∠CAB=40°,再由∠EDB=∠B得到∠DEB=100°,BE=DE,則∠AED=80°,然后根據角平分線的定義得∠DAE=20°,于是利用三角形內角和定理可計算出∠ADE=80°,所以AD=AE,于是AB=AE+BE=AD+CD.
∵∠C=100°,AC=BC,
∴∠B=∠CAB=40°,
∵∠EDB=∠B,
∴∠DEB=100°,BE=DE,
∴∠AED=80°,
∵AD平分∠BAC,
∴∠DAE=∠DAF=20°,
∴∠ADE=180°80°20°=80°,
∴AD=AE,
過點D作DF⊥AC于點F,作DH⊥AB于點H,
∴DF=DH,
在△CDF和△EDH中,
∵
∴△CDF≌△EDH(AAS),
∴CD=DE,
∴CD=BE,
∴AB=AE+BE=AD+CD.
科目:初中數學 來源: 題型:
【題目】市場上甲種商品的采購價為60元/件,乙種商品的采購價為100元/件,某商店需要采購甲、乙兩種商品共15件,且乙種商品的件數不少于甲種商品件數的2倍.設購買甲種商品件(>0),購買兩種商品共花費元.
(1)求出與的函數關系式(寫出自變量的取值范圍);
(2)試利用函數的性質說明,當采購多少件甲種商品時,所需要的費用最少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】媽媽在超市購買兩種優(yōu)質水果.先購買了2千克甲水果和3千克乙水果,共花費90元;后又購買了1千克甲水果和2千克乙水果,共花費55元.(每次兩種水果的售價都不變)
(1)求甲水果和乙水果的售價分別是每千克多少元;
(2)如果還需購買兩種水果共12千克,要求乙水果的數量不少于甲水果數量的2倍,請設計一種購買方案,使所需總費用最低.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(1,2),B(3,1),C(-2,-1).
(1)在圖中作出△ABC 關于 y 軸對稱的△A1B1C1并寫出坐標;
(2)求出△A1B1C1的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD的對角線AC、BD交于點O,且DE∥AC,CE∥BD.
(1)求證:四邊形OCED是菱形;
(2)若∠BAC=30°,AC=4,求菱形OCED的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖在平面直角坐標系中,△ABC各頂點的坐標分別為:A(4,0),B(﹣1,4),C(﹣3,1)
(1)在圖中作△A′B′C′使△A′B′C′和△ABC關于x軸對稱;
(2)寫出點A′B′C′的坐標;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,過y軸上一點A作平行于x軸的直線交某函數圖象于點D,點P是x軸上一動點,連接DP,過點P作DP的垂線交y軸于點E(E在線段OA上,E不與點O重合),則稱∠DPE為點D,P,E的“平橫縱直角”.圖1為點D,P,E的“平橫縱直角”的示意圖.如圖2,在平面直角坐標系xOy中,已知二次函數圖象與y軸交于點F(0,m),與x軸分別交于點B(﹣3,0),C(12,0).若過點F作平行于x軸的直線交拋物線于點N.
(1)點N的橫坐標為 ;
(2)已知一直角為點N,M,K的“平橫縱直角”,若在線段OC上存在不同的兩點M1、M2,使相應的點K1、K2都與點F重合,試求m的取值范圍;
(3)設拋物線的頂點為點Q,連接BQ與FN交于點H,當45°≤∠QHN≤60°時,求m的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】湘一“追逐夢想”數學興趣小組編了一個“詩·遠方”的計算程序,規(guī)定:輸入數據,時,若輸出的是代數式稱為“詩”,若輸出的是等式稱為“遠方”.
回答下列問題:
(1)當輸入正整數,時,得到“遠方”和“詩”,若“遠方”為,求證“詩”:是完全平方式.(溫馨提示:對于一個整式,如果存在另一個整式,使的條件,則稱是完全平方式,比如,是完全平方式.)
(2)當輸入,時,求“遠方”:的,的正整數解.
(3)若正數,互為倒數,求“詩”:的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com