【題目】直線與兩坐標(biāo)軸交于、兩點,以為斜邊在第二象限內(nèi)作等腰,的圖象過點,則________.
【答案】-9
【解析】
過C點作CD⊥x軸于D,CE⊥y軸于E,先確定A點坐標(biāo)為(4,0),B點坐標(biāo)為(0,2),再利用勾股定理計算出AB=2,然后根據(jù)等腰三角形的性質(zhì)得到∠ACB=90°,CA=CB=AB=,由于∠DCE=90°,根據(jù)等角的余角相等得到∠ACD=∠BCE,易證得Rt△ACD≌Rt△BCE,則CD=CE,得到四邊形CDOE為正方形,并且正方形CDOE的面積=四邊形CAOB的面積,再計算出四邊形CAOB的面積=S△CAB+S△OAB=CACB+OAOB=9,則CD=CE=3,可確定C點坐標(biāo)為(3,3),然后把C點坐標(biāo)代入反比例函數(shù)解析式即可得到k的值.
如圖,過C點作CD⊥x軸于D,CE⊥y軸于E,
令x=0,y=2;令y=0,
x+2=0,解得x=4,則A點坐標(biāo)為(4,0),B點坐標(biāo)為(0,2),
在Rt△OAB中,OA=4,OB=2,
,
∵△ACB為等腰直角三角形,
∴∠ACB=90°,CA=CB=AB=,
而∠DCE=90°,
∴∠ACD=∠BCE,
∴Rt△ACD≌Rt△BCE,
∴CD=CE,
∴四邊形CDOE為正方形,
∴正方形CDOE的面積=四邊形CAOB的面積=S△CAB+S△OAB=CACB+OAOB= ×+×4×2=9,
∴CD=CE=3,
∴C點坐標(biāo)為(3,3),
把C(3,3)代入y=得k=3×3=9.
故答案為:9.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過點A(2,0)的兩條直線,分別交軸于B,C,其中點B在原點上方,點C在原點下方,已知AB=.
(1)求點B的坐標(biāo);
(2)若△ABC的面積為4,求的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖.在直角坐標(biāo)系中,矩形ABCO的邊OA在x軸上,邊OC在y軸上,點B的坐標(biāo)為(1,3),將矩形沿對角線AC翻折,B點落在D點的位置,且AD交y軸于點E.那么點D的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016廣西桂林市)已知任意三角形的三邊長,如何求三角形面積?
古希臘的幾何學(xué)家海倫解決了這個問題,在他的著作《度量論》一書中給出了計算公式﹣﹣海倫公式S=(其中a,b,c是三角形的三邊長,p=,S為三角形的面積),并給出了證明
例如:在△ABC中,a=3,b=4,c=5,那么它的面積可以這樣計算:
∵a=3,b=4,c=5,∴p==6,∴S===6.
事實上,對于已知三角形的三邊長求三角形面積的問題,還可用我國南宋時期數(shù)學(xué)家秦九韶提出的秦九韶公式等方法解決.
如圖,在△ABC中,BC=5,AC=6,AB=9
(1)用海倫公式求△ABC的面積;
(2)求△ABC的內(nèi)切圓半徑r.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,,…都是等腰直角三角形,直角頂點,,…都在函數(shù)的圖象上,若三角形依次排列下去,則的坐標(biāo)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以G(0,1)為圓心,半徑為2的圓與x軸交于A、B兩點,與y軸交于C,D兩點,點E為⊙O上一動點,CF⊥AE于F,則弦AB的長度為________;點E在運動過程中,線段FG的長度的最小值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=2,∠B=∠C=40°,點D在線段BC上運動(D不與B、C重合),連接AD,作∠ADE=40°,DE交線段AC于E.
(1)當(dāng)∠BDA=115°時,∠EDC= °,∠DEC= °;點D從B向C運動時,∠BDA逐漸變 (填“大”或“小”);
(2)當(dāng)DC等于多少時,△ABD≌△DCE,請說明理由;
(3)在點D的運動過程中,△ADE的形狀可以是等腰三角形嗎?若可以,請直接寫出∠BDA的度數(shù).若不可以,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,過點B(6,0)的直線AB與直線OA相交于點A(4,2),動點N沿路線O→A→C運動.
(1)求直線AB的解析式.
(2)求△OAC的面積.
(3)當(dāng)△ONC的面積是△OAC面積的時,求出這時點N的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com