【題目】如圖,四邊形ABCD是正方形,點G是BC邊上任意一點,DE⊥AG于點E,BF∥DE且交AG于點F.
(1)如圖1,求證:AE=BF;
(2)連接DF,若tan∠BAG=,AB=2,求△ADF的面積.
【答案】(1)見解析;(2)8.
【解析】
(1)利用正方形的性質(zhì)證明△BAF和△ADE全等.(2)利用(1)和已知條件,分別求出DE,AF長就可以求出三角形面積,
(1)∵四邊形ABCD是正方形,點G是BC邊上任意一點,DE⊥AG于點E,BF∥DE,
∴∠AB=AD,∠BAD=90°,∠AED=90°,∠AED=∠BFA,
∴∠BAF+∠EAD=90°,∠EAD+∠ADE=90°,
∴∠BAF=∠ADE,
在△BAF和△ADE中,
,
∴△BAF≌△ADE(AAS),
∴BF=AE,
即AE=BF;
(2)由(1)知∠AED=∠BFA=90°,
∵tan∠BAG=,AB=2,
∴tan∠BAF=,
∴AF=4,BF=2,
由(1)知,△BAF≌△ADE,
∴AF=DE,
∴DE=4,
∵∠AED=90°,
∴△ADF的面積是:
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC的角平分線,添加下列條件能使△ABD≌△ACD的是( )
①AB=AC;②AB=AD;③∠ADB=90°;④BD=CD.
A.①②③B.①②④C.①③D.①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰三角形ABC中,∠A=90°,D是BC邊的中點.
(1)若E在直角邊AB上運動,F在直角邊AC上運動,在運動過程中始終保持BE=AF.則△EDF_____是三角形.
(2)在(1)的條件下,四邊形AEDF的面積是否發(fā)生變化?若不變化,請直接寫出當(dāng)AB=4時,四邊形AEDF的面積;若變化,請說明理由.
(3)若E,F分別為AB,CA延長線上的點,且BE=AF,其他條件不變,那么(1)中的結(jié)論是否還成立?畫圖并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的頂點A在第一象限,點B,C的坐標(biāo)分別為(2,1),(6,1),∠BAC=90°,AB=AC,直線AB交y軸于點P,若△ABC與△A′B′C′關(guān)于點P成中心對稱,則點A′的坐標(biāo)為( 。
A. (﹣4,﹣5) B. (﹣5,﹣4) C. (﹣3,﹣4) D. (﹣4,﹣3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P是菱形ABCD邊上的一動點,它從點A出發(fā)沿在A→B→C→D路徑勻速運動到點D,設(shè)△PAD的面積為y,P點的運動時間為x,則y關(guān)于x的函數(shù)圖象大致為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)店銷售甲、乙兩種羽毛球,已知甲種羽毛球每筒的售價比乙種羽毛球多15元,王老師從該網(wǎng)店購買了2筒甲種羽毛球和3筒乙種羽毛球,共花費255元.
(1)該網(wǎng)店甲、乙兩種羽毛球每筒的售價各是多少元?
(2)根據(jù)消費者需求,該網(wǎng)店決定用不超過8780元購進甲、乙兩種羽毛球共200筒,且甲種羽毛球的數(shù)量大于乙種羽毛球數(shù)量的,已知甲種羽毛球每筒的進價為50元,乙種羽毛球每筒的進價為40元.
①若設(shè)購進甲種羽毛球m筒,則該網(wǎng)店有哪幾種進貨方案?
②若所購進羽毛球均可全部售出,請求出網(wǎng)店所獲利潤W(元)與甲種羽毛球進貨量m(筒)之間的函數(shù)關(guān)系式,并說明當(dāng)m為何值時所獲利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為10cm,點E在邊AB上,且AE=4cm,
(1)如果點P在線段BC上以2cm/s的速度由B點向C點運動,同時,點Q在線段CD上由C點向D點運動.
①若點Q的運動速度與點P的運動速度相等,經(jīng)過2秒后,△BPE與△CQP是否全等?請說明理由.
②若點Q的運動速度與點P的運動速度不相等,當(dāng)點Q的運動速度為________cm/s時,在某一時刻也能夠使△BPE與△CQP全等.
(2)若點Q以②中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都逆時針沿正方形ABCD的四條邊運動.求經(jīng)過多少秒后,點P與點Q第一次相遇,并寫出第一次相遇點在何處?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=2x+3與x軸相交于點A,與y軸相交于點B.
(1)求點A, B的坐標(biāo);
(2)過點B作直線BP與x軸相交于點P,且使OP=2OA,求的面積.
(3)直接寫出y<0時,x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】游泳是一項深受青少年喜愛的體育活動,學(xué)校為了加強學(xué)生的安全意識,組織學(xué)生觀看了紀(jì)實片“孩子,請不要私自下水”,并于觀看后在本校的2000名學(xué)生中作了抽樣調(diào)查.請根據(jù)下面兩個不完整的統(tǒng)計圖回答以下問題:
(1)這次抽樣調(diào)查中,共調(diào)查了__ __名學(xué)生;
(2)補全兩個統(tǒng)計圖;
(3)根據(jù)抽樣調(diào)查的結(jié)果,估算該校2000名學(xué)生中大約有多少人“一定會下河游泳”?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com