【題目】某機(jī)構(gòu)對2016年微信用戶的職業(yè)頒布進(jìn)行了隨機(jī)抽樣調(diào)查(職業(yè)說明:A:黨政機(jī)關(guān)、軍隊(duì),B:事業(yè)單位,C:企業(yè),D:自由職業(yè)及人體戶,E:學(xué)生,F(xiàn):其他),圖1和圖2是根據(jù)調(diào)查數(shù)據(jù)繪制而成的不完整的統(tǒng)計(jì)圖.請根據(jù)圖中提供的信息,解答下列問題:
(1)該機(jī)構(gòu)共抽查微信用戶人;
(2)在圖1中,補(bǔ)全條形統(tǒng)計(jì)圖;
(3)在圖2中,“D”用戶所對應(yīng)扇形的圓心角度數(shù)為度;
(4)2016年微信用戶約有7.5億人,估計(jì)“E”用戶大約有億人.

【答案】
(1)50000
(2)解:如圖;


(3)90
(4)1.08
【解析】解:(1)該機(jī)構(gòu)共抽查微信用戶1300÷2.6%=50000 人;(2)”C”用戶人數(shù)為:50000×40%=20000人,(3)“D”用戶所對應(yīng)扇形的圓心角度數(shù)為 ;(4)2016年微信用戶約有7.5億人,估計(jì)“E”用戶大約有7.5× =1.08億,

答:2016年微信用戶約有7.5億人,估計(jì)“E”用戶大約有1.08億人.

所以答案是:50000,90,1.08.

【考點(diǎn)精析】本題主要考查了扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖的相關(guān)知識點(diǎn),需要掌握能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目以及事物的變化情況;能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目,但是不能清楚地表示出各個(gè)部分在總體中所占的百分比以及事物的變化情況才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【發(fā)現(xiàn)】:如圖1,在正三角形ABC中,在AB,AC邊上分別取點(diǎn)M,N,BM=AN,連接BN,CM,相交于點(diǎn)O,求∠α
易得:△ABN≌△BCN,則∠1=∠2
∵∠α是△BOC的外角,∴∠α=∠2+∠3
∴∠α=∠1+∠3=∠ABC=60°

【推廣】:在正n邊形中,對相鄰的兩邊實(shí)施同樣的操作…
(1)如圖2,在正四邊形ABCD中,在AB,AD邊上分別取點(diǎn)M,N,連接BN,CM,可確定∠α=°;

(2)如圖3,在正五邊形ABCDE中,在AB,AD邊上分別取點(diǎn)M,N,連接BN,CM,可確定∠α=°;

(3)判斷:∠α可以等于160°嗎?如果可以,求出對應(yīng)的邊數(shù)n,若不可以,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,D,E,F(xiàn)分別是BC,AD,CE邊上的中點(diǎn),且SABC=16 cm2,則SBEF_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,AO、B在同一條直線上,∠AOE=COD,∠EOD=30°

1)若∠AOE=88°30′,求∠BOC的度數(shù);

2)若射線OC平分∠EOB,求∠BOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在6×6的正方形網(wǎng)格中,每個(gè)小正方形的邊長為1,點(diǎn)A、B、C、D、EF、MN、P均為格點(diǎn)(格點(diǎn)是指每個(gè)小正方形的頂點(diǎn)).

1)利用圖①中的網(wǎng)格,過P點(diǎn)畫直線MN的平行線和垂線.

2)把圖②網(wǎng)格中的三條線段AB、CDEF通過平移使之首尾順次相接組成一個(gè)三角形(在圖②中畫出三角形).

3)第(2)小題中線段AB、CD、EF首尾順次相接組成一個(gè)三角形的面積是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】道路交通管理?xiàng)l例規(guī)定:小汽車在城街上行駛速度不得超過70千米/小時(shí),如圖,一輛小汽車在一條城市街路上直道行駛,某一時(shí)刻剛好行駛到路面對車速檢測儀A正前方30B處,過了2秒后,測得小汽車C與車速檢測儀A間距離為50米,這輛小汽車超速了嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,E是AD上一點(diǎn),AB=8,BE=BC=10,動(dòng)點(diǎn)P在線段BE上(與點(diǎn)B、E不重合),點(diǎn)Q在BC的延長線上,PE=CQ,PQ交EC于點(diǎn)F,PG∥BQ交EC于點(diǎn)G,設(shè)PE=x.

(1)求證:△PFG≌△QFC
(2)連結(jié)DG.當(dāng)x為何值時(shí),四邊形PGDE是菱形,請說明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】Rt△ABC,∠ACB=90°,D,E是邊AB上兩點(diǎn),CE所在直線垂直平分線段AD,CD平分∠BCE,AC=5cm,BD的長為(

A. 5cm B. 6cm C. 7cm D. 8cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四邊形 ABCD ,BC=CD,連接 ACBD,∠ADB=90°.

(1)如圖 1, AD=BD=BC,過點(diǎn) D DF⊥AB 于點(diǎn) F, AC 于點(diǎn) E:

∠DAC;

猜想 AE、DE、CE 的數(shù)量關(guān)系,并證明你的猜想;

(2)如圖 2, AC=BD,∠DAC 的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案