【題目】一張半徑為2的半圓圖紙沿它的一條弦折疊,使其弧與直徑相切,如圖所示,O為半圓圓心,如果切點分直徑之比為3:1,則折痕長為(  )

A. 3 B. C. D. 2

【答案】C

【解析】

O作弦BC的垂線OP,垂足為D,分別與弧的交點為A、G,過切點FPF⊥半徑OEOPP點,根據(jù)垂徑定理及其推論得到BD=DC,即OPBC的中垂線,OP必過弧BGC所在圓的圓心,再根據(jù)切線的性質(zhì)得到PF必過弧BGC所在圓的圓心,則點P為弧BGC所在圓的圓心,根據(jù)折疊的性質(zhì)有⊙P為半徑等于⊙O的半徑,即PF=PG=OE=2,并且AD=GD,由F點分⊙O的直徑為3:1兩部分可計算出OF=1,在RtOPF中,設(shè)OG=x,利用勾股定理可計算出x,則由AG=PG-AP計算出AG,可得到DG的長,于是可計算出OD的長,在RtOBD中,利用勾股定理計算BD,即可得到BC的長.

O作弦BC的垂線OP,垂足為D,分別與弧的交點為A、G,過切點FPF⊥半徑OEOPP點,如圖,

OPBC,

BD=DC,即OPBC的中垂線,

OP必過弧BGC所在圓的圓心,

又∵OE為弧BGC所在圓的切線,PFOE,

PF必過弧BGC所在圓的圓心,

∴點P為弧BGC所在圓的圓心,

∵弧BAC沿BC折疊得到弧BGC,

∴⊙P為半徑等于⊙O的半徑,即PF=PG=OE=2,并且AD=GD,

OG=AP,

F點分⊙O的直徑為3:1兩部分,

OF=1,

RtOPF中,設(shè)OG=x,則OP=x+2,

OP2=OF2+PF2,即(x+2)2=12+22,解得x=-2,

AG=2-(-2)=4-,

DG=,

OD=OG+DG=-2+2-=

RtOBD中,BD2=OB2+OD2,即BD2=22-(2,

BD=,

BC=2BD=

故選C.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,梯形ABCD中,ADBC,D=90°,BC=CD=12,ABE=45°,點EDC上,AE,BC的延長線相交于點F,若AE=10,則SADE+SCEF的值是______ .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形OABC的頂點A、C分別在x軸、y軸的正半軸上,且OA=4,OC=3,若拋物線經(jīng)過O,A兩點,且頂點在BC邊上,點E的坐標分別為(0,1),對稱軸交BE于點F

(1)求該拋物線的表達式;

(2)點M在對稱軸右側(cè)的拋物線上,點Nx軸上,請問是否存在以點AF,M,N為頂點的四邊形是平行四邊形?若存在,請求出所有符合條件的點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,在Rt△ABC中,∠ACB=90°,BC=4,AB=4,點DAC邊上的一個動點,將△ABD沿BD所在直線折疊,使點A落在P處.

(1)如圖1,若點DAC中點,連接PC

AC的長;

試猜想四邊形BCPD的形狀,并加以證明;

(2)如圖2,若BDAD,過點PPHBCBC的延長線于點H,求CH的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了研究某藥品的療效,現(xiàn)選取若干名志愿者進行臨床試驗.所有志愿者的舒張壓數(shù)據(jù)(單位:kPa)的分組區(qū)間為[12,13),[13,14),[14,15),[15,16),[16,17],將其按從左到右的順序分別編號為第一組、第二組、、第五組.如圖是根據(jù)試驗數(shù)據(jù)制成的頻率分布直方圖.

(1)若第一組接受治療的志愿者有12人,則第三組接受治療的志愿者有多少人?

(2)若接受治療的志愿者共有50人,規(guī)定舒張壓在14kpa以上的志愿者接受進一步的臨床試驗,若從三組志愿者中按比例分配20張床位,則舒張壓數(shù)據(jù)在[14,15)的志愿者總共可以得到多少張床位?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=x2+bx+c經(jīng)過A(﹣1,0)、B(3,0)兩點.

(1)請求出拋物線的解析式;

(2)0<x<4時,請直接寫出y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商家銷售一款商品,進價每件80元,售價每件145元,每天銷售40件,每銷售一件需支付給商場管理費5元,未來一個月30天計算,這款商品將開展每天降價1的促銷活動,即從第一天開始每天的單價均比前一天降低1元,通過市場調(diào)查發(fā)現(xiàn),該商品單價每降1元,每天銷售量增加2件,設(shè)第xx為整數(shù)的銷售量為y件.

直接寫出yx的函數(shù)關(guān)系式;

設(shè)第x天的利潤為w元,試求出wx之間的函數(shù)關(guān)系式,并求出哪一天的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖, 四邊形OABC為直角梯形,A(4,0),B(3,4),C(0,4). 點 出發(fā)以每秒2個單位長度的速度向運動;點同時出發(fā),以每秒1個單位長度的速度向運動.其中一個動點到達終點時,另一個動點也隨之停止運動.過點垂直軸于點,連結(jié)AC交NP于Q,連結(jié)MQ.

【1】 (填M或N)能到達終點;

【1】求△AQM的面積S與運動時間t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍,當t為何值時,S的值最大;

【1】是否存在點M,使得△AQM為直角三角形?若存在,求出點M的坐標,若不存在,

說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,利用一面墻(墻的長度不超過45m),用80m長的籬笆圍一個矩形場地.

(1)怎樣圍才能使矩形場地的面積為750m2?

(2)能否使所圍矩形場地的面積為810m2 ,為什么?

查看答案和解析>>

同步練習冊答案