【題目】如圖所示,,是的中點(diǎn),,,求證.
【答案】見解析
【解析】
延長AM到F,使MF=AM,交CD于點(diǎn)N,構(gòu)造平行四邊形,利用條件證明△ABF≌△CAD,可得出∠BAF=∠ACD,再結(jié)合條件可得到∠ANC=90°,可證得結(jié)論.
證明:延長AM到F,使MF=AM,交CD于點(diǎn)N,
∵BM=EM,
∴四邊形ABFE是平行四邊形,
∴BF=AE,∠ABF+∠BAE=180°,
∵∠BAC=∠DAE=90°,
∴∠CAD+∠BAE=180°,
∴∠ABF=∠CAD,
∵BF=AE,AD=AE,
∴BF=AD,
在△ABF和△CAD中,,
∴△ABF≌△CAD(SAS),
∴∠BAF=∠ACD,
∵∠BAC=90°,
∴∠BAF+∠CAF=90°,
∴∠ACD+∠CAF=90°,
∴∠ANC=90°,
∴AM⊥CD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)A種產(chǎn)品,它的成本是6元/件,售價(jià)是8元/件,年銷售量為5萬件.為了獲得更好的效益,公司準(zhǔn)備拿出一定的資金做廣告,根據(jù)經(jīng)驗(yàn),每年投入的廣告費(fèi)是x萬元,產(chǎn)品的年銷售量將是原銷售量的y倍,且y與x之間滿足我們學(xué)過的二種函數(shù)(即一次函數(shù)和二次函數(shù))關(guān)系中的一種,它們的關(guān)系如下表:
x(萬元) | 0 | 0.5 | 1 | 1.5 | 2 | … |
y | 1 | 1.275 | 1.5 | 1.675 | 1.8 | … |
(1)求y與x的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍)
(2)如果把利潤看作是銷售總額減去成本費(fèi)用和廣告費(fèi)用,試求出年利潤W(萬元)與廣告費(fèi)用x(萬元)的函數(shù)關(guān)系式,并計(jì)算每年投入的廣告費(fèi)是多少萬元時(shí)所獲得的利潤最大?
(3)如果公司希望年利潤W(萬元)不低于14萬元,請你幫公司確定廣告費(fèi)的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知BE∥AO,
解:因?yàn)?/span>BE∥AO.(已知)
所以
因?yàn)?/span>,(已知 )
所以 .(等量代換)
.(等式性質(zhì))
因?yàn)?/span> ,(已求)
所以 .(等量代換)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,過對角線BD的中點(diǎn)O作直線EF,分別交DA的延長線,AB, DC,BC的延長線于點(diǎn)E,M,N,F.
(1)求證:△ODE≌△OBF;
(2)除(1)中這對全等三角形外,再寫出兩對全等三角形(不需要證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊三角形ABC中,BC=6 cm,射線AG∥BC,點(diǎn)E從點(diǎn)A出發(fā)沿射線AG以1 cm/s的速度運(yùn)動(dòng);同時(shí)點(diǎn)F從點(diǎn)B出發(fā)沿射線BC以2 cm/s的速度運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t(s).
(1)△ABC的BC邊上的高為_________cm;
(2)連接EF,當(dāng)EF經(jīng)過AC的中點(diǎn)D時(shí),求證:△ADE≌△CDF;
(3)求當(dāng)t為何值時(shí),AC與EF互相平分;
(4)當(dāng)t=________s時(shí),四邊形ACFE是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,△ABC中,,BD平分∠ABC,BC上有動(dòng)點(diǎn)P.
(1)DP⊥BC時(shí)(如圖1),求證:;
(2)DP平分∠BDC時(shí)(如圖2),BD、CD、CP三者有何數(shù)量關(guān)系?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以坐標(biāo)原點(diǎn)為圓心,1為半徑的圓分別交x,y軸的正半軸于點(diǎn)A,B.
(1)如圖一,動(dòng)點(diǎn)P從點(diǎn)A處出發(fā),沿x軸向右勻速運(yùn)動(dòng),與此同時(shí),動(dòng)點(diǎn)Q從點(diǎn)B處出發(fā),沿圓周按順時(shí)針方向勻速運(yùn)動(dòng).若點(diǎn)Q的運(yùn)動(dòng)速度比點(diǎn)P的運(yùn)動(dòng)速度慢,經(jīng)過1秒后點(diǎn)P運(yùn)動(dòng)到點(diǎn)(2,0),此時(shí)PQ恰好是⊙O的切線,連接OQ.求∠QOP的大小;
(2)若點(diǎn)Q按照(1)中的方向和速度繼續(xù)運(yùn)動(dòng),點(diǎn)P停留在點(diǎn)(2,0)處不動(dòng),求點(diǎn)Q再經(jīng)過5秒后直線PQ被⊙O截得的弦長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,A(a,0),C(0,c)且滿足:,長方形ABCO在坐標(biāo)系中(如圖)點(diǎn)O為坐標(biāo)系的原點(diǎn)。
(1)求點(diǎn)B的坐標(biāo)。
(2)如圖1,若點(diǎn)M從點(diǎn)A出發(fā),以2個(gè)單位/秒的速度向右運(yùn)動(dòng)(不超過點(diǎn)0),點(diǎn)N從原點(diǎn)O出發(fā),以1個(gè)單位/秒的速度向下運(yùn)動(dòng)(不超過點(diǎn)C),設(shè)M、N兩點(diǎn)同時(shí)出發(fā),在它們運(yùn)動(dòng)的過程中,四邊形MBNO的面積是否發(fā)生變化?若不變,求其值;若變化,求變化的范圍。
(3)如圖2,E為x軸負(fù)半軸上一點(diǎn),且,F是x軸正半軸上一動(dòng)點(diǎn),∠ECF的平分線CD交BE的延長線于點(diǎn)D,在點(diǎn)F運(yùn)動(dòng)的過程中,請?zhí)骄俊?/span>CFE與∠D的數(shù)量關(guān)系并說明理由。
(注:三角形三個(gè)內(nèi)角的和等于)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在△ABC中,AB=AC,AB的垂直平分線交線段AC于D,若△ABC和△DBC的周長分別是60 cm和38 cm,則△ABC的腰長和底邊BC的長分別是( )
A. 22cm和16cmB. 16cm和22cm
C. 20cm和16cmD. 24cm和12cm
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com