【題目】如圖,是一種斜挎包,其挎帶由雙層部分、單層部分和調(diào)節(jié)扣構(gòu)成.小垣用后發(fā)現(xiàn),通過(guò)調(diào)節(jié)扣加長(zhǎng)或縮短單層部分的長(zhǎng)度,可以使挎帶的長(zhǎng)度(單層部分與雙層部分長(zhǎng)度的和,其中調(diào)節(jié)扣所占的長(zhǎng)度忽略不計(jì))加長(zhǎng)或縮短.設(shè)單層部分的長(zhǎng)度為xcm,雙層部分的長(zhǎng)度為ycm,經(jīng)測(cè)量,得到如下數(shù)據(jù):
(1)根據(jù)表中數(shù)據(jù)的規(guī)律,補(bǔ)全以下表格,并求出y關(guān)于x的函數(shù)表達(dá)式;
單層部分的長(zhǎng)度x(cm) | … | 4 | 6 | 8 | 10 | … | 150 |
雙層部分的長(zhǎng)度y(cm) | … | 73 | 72 | 71 | ______ | … | ______ |
(2)根據(jù)小垣的身高和習(xí)慣,挎帶的長(zhǎng)度為120cm時(shí),背起來(lái)正合適,請(qǐng)求出此時(shí)單層部分的長(zhǎng)度.
【答案】(1)70,0;;(2)此時(shí)單層部分的長(zhǎng)度為90cm.
【解析】
(1)觀察表格可知,y是x的一次函數(shù),設(shè)y=kx+b,利用待定系數(shù)法即可解決問(wèn)題;
(2)列出方程組,即可解決問(wèn)題.
解:(1)設(shè)y關(guān)于x的函數(shù)關(guān)系解析式為:y=kx+b,將(4,73)(6,72),
代入y=kx+b中得,
解得:;
y關(guān)于x的函數(shù)關(guān)系解析式為:;
當(dāng)x=10時(shí),y=,
當(dāng)x=150時(shí),y==0.
故答案為:70;0
(2)當(dāng)跨帶的長(zhǎng)度為120cm時(shí),可得
x+y=120,
即,
解得x=90.
答:此時(shí)單層部分的長(zhǎng)度為90cm.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,D是邊AB的中點(diǎn),E是邊AC上一動(dòng)點(diǎn),連接DE,過(guò)點(diǎn)D作DF⊥DE交邊BC于點(diǎn)F(點(diǎn)F與點(diǎn)B、C不重合),延長(zhǎng)FD到點(diǎn)G,使,連接EF、AG,已知,,.
(1)試說(shuō)明;
(2)請(qǐng)你連接EG,設(shè),,求y關(guān)于x的函數(shù)關(guān)系式;
(3)當(dāng)是以BF為腰的等腰三角形時(shí),直接寫出AE的長(zhǎng),不必說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,⊙O半徑為2,弦BD=2,A為弧BD的中點(diǎn),E為弦AC的中點(diǎn),且在BD上,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=x2+bx+c的圖象經(jīng)過(guò)(0,3),(4,3).
(1)求b、c的值.
(2)開口方向 ,對(duì)稱軸為 ,頂點(diǎn)坐標(biāo)為 .
(3)該函數(shù)的圖象怎樣由y=x2的圖象平移得到.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知Rt△ABC中,∠ACB=90°,∠B=15°,邊AB的垂直平分線交邊BC于點(diǎn)E,垂足為點(diǎn)D,取線段BE的中點(diǎn)F,聯(lián)結(jié)DF.求證:AC=DF.(說(shuō)明:此題的證明過(guò)程需要批注理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公大樓頂端A測(cè)得旗桿頂端E的俯角α是45°,旗桿低端D到大樓前梯砍底邊的距離DC是20米,梯坎坡長(zhǎng)BC是12米,梯坎坡度i=1:,則大樓AB的高度為_________米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面內(nèi)的兩條直線有相交和平行兩種位置關(guān)系.
(1)如圖1,若AB∥CD,點(diǎn)P在AB、CD內(nèi)部,∠B=50°,∠D=30°,求∠BPD.
(2)如圖2,將點(diǎn)P移到AB、CD外部,則∠BPD、∠B、∠D之間有何數(shù)量關(guān)系?(不需證明)
(3)如圖3,寫出∠BPD﹑∠B﹑∠D﹑∠BQD之間的數(shù)量關(guān)系?請(qǐng)證明你的結(jié)論.
(4)如圖4,求出∠A+∠B+∠C+∠D+∠E+∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D是邊BC上的點(diǎn)(與B,C兩點(diǎn)不重合),過(guò)點(diǎn)D作DE∥AC,DF∥AB,分別交AB,AC于E,F(xiàn)兩點(diǎn),下列說(shuō)法正確的是( )
A. 若AD⊥BC,則四邊形AEDF是矩形 B. 若BD=CD,則四邊形AEDF是菱形
C. 若AD垂直平分BC,則四邊形AEDF是矩形 D. 若AD平分∠BAC,則四邊形AEDF是菱形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊿中,,點(diǎn)分別在 邊上,且, .
⑴.求證:⊿是等腰三角形;
⑵.當(dāng) 時(shí),求的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com