科目: 來源: 題型:
【題目】拋物線交x軸于,,交y軸的負半軸于C,頂點為下列結(jié)論:;;當時,;當是等腰直角三角形時,則;當是等腰三角形時,a的值有3個其中正確的有 個.
A. 5 B. 4 C. 3 D. 2
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線與x軸交于A、B兩點,與y軸交于點,且此拋物線的頂點坐標為.
求此拋物線的解析式;
設(shè)點D為已知拋物線對稱軸上的任意一點,當與面積相等時,求點D的坐標;
點P在線段AM上,當PC與y軸垂直時,過點P作x軸的垂線,垂足為E,將沿直線CE翻折,使點P的對應點與P、E、C處在同一平面內(nèi),請求出點坐標,并判斷點是否在該拋物線上.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ ABC中,∠ ABC=90°,AB=BC,D在邊 AC上,AE┴ BD于 E.
(1) 如圖 1,作 CF⊥ BD于 F,求證:CF-AE=EF;
(2) 如圖 2,若 BC=CD,求證:BD=2AE ;
(3) 如圖3,作 BM ⊥BE,且 BM=BE,AE=2,EN=4,連接 CM交 BE于 N,請直接寫出△BCM的面積為______.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,菱形ABCD,,,連接對角線AC、BD交于點O,
如圖2,將沿DB平移,使點D與點O重合,求平移后的與菱形ABCD重合部分的面積.
如圖3,將繞點O逆時針旋轉(zhuǎn)交AB于點,交BC于點F,
求證:;
求出四邊形的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】下面是某同學對多項式(x2-4x+2)(x2-4x+6)+4進行因式分解的過程.
解:設(shè)x2-4x=y
原式=(y+2)(y+6)+4 (第一步)
= y2+8y+16 (第二步)
=(y+4)2 (第三步)
=(x2-4x+4)2 (第四步)
回答下列問題:
(1)該同學第二步到第三步運用了因式分解的_______.
A.提取公因式 B.平方差公式 C.兩數(shù)和的完全平方公式 D.兩數(shù)差的完全平方公式
(2)該同學因式分解的結(jié)果是否徹底?________.(填“徹底”或“不徹底”)
若不徹底,請直接寫出因式分解的最后結(jié)果_________.
(3)請你模仿以上方法嘗試對多項式(x2-2x)(x2-2x+2)+1進行因式分解.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知△ABC和△CDE都是等邊三角形,且A、C、E三點共線.AD與BE交于點O,AD與BC交于點P,BE與CD交于點Q,連結(jié)PQ.以下五個結(jié)論:① AD=BE;② ∠AOB=60°;③AP=BQ; ④△PCQ是等邊三角形;⑤PQ∥AE.其中正確結(jié)論的有( 。﹤
A.5B.4C.3D.2
查看答案和解析>>
科目: 來源: 題型:
【題目】某縣教育局為了豐富初中學生的大課間活動,要求各學校開展形式多樣的陽光體育活動某中學就“學生體育活動興趣愛好”的問題,隨機調(diào)查了本校某班的學生,并根據(jù)調(diào)查結(jié)果繪制成如下的不完整的扇形統(tǒng)計圖和條形統(tǒng)計圖:
在這次調(diào)查中,喜歡籃球項目的同學有多少人?
在扇形統(tǒng)計圖中,“乒乓球”的百分比為多少?
如果學校有800名學生,估計全校學生中有多少人喜歡籃球項目?
請將條形統(tǒng)計圖補充完整;
在被調(diào)查的學生中,喜歡籃球的有2名女同學,其余為男同學現(xiàn)要從中隨機抽取2名同學代表班級參加;@球隊,請運用列表或樹狀圖求出所抽取的2名同學恰好是1名女同學和1名男同學的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】某花店準備購進甲、乙兩種花卉,若購進甲種花卉20盆,乙種花卉50盆,需要720元;若購進甲種花卉40盆,乙種花卉30盆,需要880元.
(1)求購進甲、乙兩種花卉,每盆各需多少元?
(2)該花店銷售甲種花卉每盆可獲利6元,銷售乙種花卉每盆可獲利1元,現(xiàn)該花店準備拿出800元全部用來購進這兩種花卉,設(shè)購進甲種花卉x盆,全部銷售后獲得的利潤為W元,求W與x之間的函數(shù)關(guān)系式;
(3)在(2)的條件下,考慮到顧客需求,要求購進乙種花卉的數(shù)量不少于甲種花卉數(shù)量的6倍,且不超過甲種花卉數(shù)量的8倍,那么該花店共有幾種購進方案?在所有的購進方案中,哪種方案獲利最大?最大利潤是多少元?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,大樹AB與大數(shù)CD相距13m,小華從點B沿BC走向點C,行走一段時間后他到達點E,此時他仰望兩棵大樹的頂點A和D,兩條視線的夾角正好為90°,且EA=ED.已知大樹AB的高為5m,小華行走的速度為1m/s,小華行走到點E的時間是( )
A. 13s B. 8s C. 6s D. 5s
查看答案和解析>>
科目: 來源: 題型:
【題目】工程上常用鋼珠來測量零件上小孔的直徑.假設(shè)鋼珠的直徑是12毫米,測得鋼珠頂端離零件表面的距離為9毫米,如圖所示,則這個小孔的直徑AB是_________毫米.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com