科目: 來源: 題型:
【題目】如圖,A為某旅游景區(qū)的最佳觀景點,游客可以在B處乘坐纜車沿BD方向先到達小觀景平臺DE觀景,然后再由E處繼續(xù)乘坐纜車沿EA方向到達A處,返程時從A處乘坐升降電梯直接到C處.已知AC⊥BC于C,DE∥BC,斜坡BD的坡度i=4:3,BC=210米,DE=48米,BD=100米,α=64°,則AC的高度為( 。┟祝ńY(jié)果精確到0.1米,參考數(shù)據(jù):sin64°≈0.9,tan64°≈2.1)
A. 214.2 B. 235.2 C. 294.2 D. 315.2
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AB的垂直平分線交AB于M,交AC于N.
(1)若∠ABC=70°,求∠MNA的度數(shù).
(2)連接NB,若AB=8cm,△NBC的周長是14cm.求BC的長;
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,直線a,b,c表示三條公路,現(xiàn)要建一個貨物中轉(zhuǎn)站,要求它到三條公路的距離相等,則可供選擇的地址有_________處。(填數(shù)字)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AB=5cm,BC=4cm,若點P從點A出發(fā),以每秒1cm的速度沿折線A﹣B﹣C﹣A運動,設(shè)運動時間為t(t>0)秒.
(1)AC= cm;
(2)若點P恰好在∠ABC的角平分線上,求此時t的值;
(3)在運動過程中,當t為何值時,△ACP為等腰三角形(直接寫出結(jié)果)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,弦CD平分∠ACB,點E為弧AD上一點,連接CE、DE,CD與AB交于點N.
(1)如圖1,求證:∠AND=∠CED;
(2)如圖2,AB為⊙O直徑,連接BE、BD,BE與CD交于點F,若2∠BDC=90°﹣∠DBE,求證:CD=CE;
(3)如圖3,在(2)的條件下,連接OF,若BE=BD+4,BC=,求線段OF的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】(1)課外興趣小組活動時,老師提出了如下問題:
如圖①,△ABC中,若AB=13,AC=9,求BC邊上的中線AD的取值范圍.
小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:延長AD至點E,使DE=AD,連接BE.請根據(jù)小明的方法思考:
Ⅰ.由已知和作圖能得到△ADC≌△EDB,依據(jù)是 .
A.SSS B.SAS C.AAS D.HL
Ⅱ.由“三角形的三邊關(guān)系”可求得AD的取值范圍是 .
解后反思:題目中出現(xiàn)“中點”、“中線”等條件,可考慮延長中線構(gòu)造全等三角形,把分散的已知條件和所求證的結(jié)論集中到同一個三角形之中.
(2)如圖②,AD是△ABC的中線,BE交AC于E,交AD于F,且∠FAE=∠AFE.若AE=4,EC=3,求線段BF的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知△ABC是等邊三角形,BD是AC上的高線.作AE⊥AB于點A,交BD的延長線于點E.取BE的中點M,連結(jié)AM.
(1)求證:△AEM是等邊三角形;
(2)若AE=2,求△AEM的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,菱形ABCD的邊AB在x軸上,點B坐標(﹣3,0),點C在y軸正半軸上,且sin∠CBO=,點P從原點O出發(fā),以每秒一個單位長度的速度沿x軸正方向移動,移動時間為t(0≤t≤5)秒,過點P作平行于y軸的直線l,直線l掃過四邊形OCDA的面積為S.
(1)求點D坐標.
(2)求S關(guān)于t的函數(shù)關(guān)系式.
(3)在直線l移動過程中,l上是否存在一點Q,使以B、C、Q為頂點的三角形是等腰直角三角形?若存在,直接寫出Q點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖, △ABC中,AB=AC,∠A=36°,AC的垂直平分線交AB于E,D為垂足,連結(jié)EC
⑴求∠ECD的度數(shù);
⑵若CE=5,求CB的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線y=ax2經(jīng)過點A(﹣2,﹣8).
(1)求此拋物線的函數(shù)解析式;
(2)寫出這個二次函數(shù)圖象的頂點坐標、對稱軸;
(3)判斷點B(﹣1,﹣4)是否在此拋物線上;
(4)求出此拋物線上縱坐標為﹣6的點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com