科目: 來源: 題型:
【題目】一個(gè)零件的形狀如圖1所示,按規(guī)定這個(gè)零件中∠A和∠DBC都應(yīng)為直角.工人師傅量得這個(gè)零件各邊尺寸如圖2所示.
圖1 圖2
(1)你認(rèn)為這個(gè)零件符合要求嗎?為什么?
(2)求這個(gè)零件的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】若正整數(shù)a,b,c(a<b<c)滿足a2+b2=c2,則稱(a,b,c)為一組“勾股數(shù)”.
觀察下列兩類“勾股數(shù)”:
第一類(a是奇數(shù)):(3,4,5);(5,12,13);(7,24,25);…
第二類(a是偶數(shù)):(6,8,10);(8,15,17);(10,24,26);…
(1)請?jiān)賹懗鰞山M勾股數(shù),每類各寫一組;
(2)分別就a為奇數(shù)、偶數(shù)兩種情形,用a表示b和c,并選擇其中一種情形證明(a,b,c)是“勾股數(shù)”.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,BD是⊙O的直徑,BA是⊙O的弦,過點(diǎn)A的切線交BD延長線于點(diǎn)C,OE⊥AB于E,且AB=AC,若CD=2,則OE的長為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】某校為美化校園,計(jì)劃對面積為1800m2的區(qū)域進(jìn)行綠化,安排甲、乙兩個(gè)工程隊(duì)完成.已知甲隊(duì)每天能完成綠化的面積是乙隊(duì)每天能完成綠化的面積的2倍,并且在獨(dú)立完成面積為400 m2區(qū)域的綠化時(shí),甲隊(duì)比乙隊(duì)少用4天.
(1)求甲、乙兩工程隊(duì)每天能完成綠化的面積分別是多少m2?
(2)若學(xué)校每天需付給甲隊(duì)的綠化費(fèi)用是0.4萬元,乙隊(duì)為0.25萬元,要使這次的綠化總費(fèi)用不超過8萬元,至少應(yīng)安排甲隊(duì)工作多少天?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,tan∠ACB=2,D在△ABC內(nèi)部,且AD=CD,∠ADC=90°,連接BD,若△BCD的面積為10,則AD的長為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,平行四邊形ABCD的周長為12,∠A=60°,設(shè)邊AB的長為x,四邊形ABCD的面積為y,則下列圖象中,能表示y與x函數(shù)關(guān)系的圖象大致是( )
A. B. C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知∠AOB=60°,在∠AOB的平分線OM上有一點(diǎn)C,將一個(gè)120°角的頂點(diǎn)與點(diǎn)C重合,它的兩條邊分別與直線OA、OB相交于點(diǎn)D、E.
(1)當(dāng)∠DCE繞點(diǎn)C旋轉(zhuǎn)到CD與OA垂直時(shí)(如圖1),請猜想OE+OD與OC的數(shù)量關(guān)系并說明理由;
(2)當(dāng)∠DCE繞點(diǎn)C旋轉(zhuǎn)到CD與OA不垂直時(shí),到達(dá)圖2的位置,(1)中的結(jié)論是否成立?說明理由;
(3)當(dāng)∠DCE繞點(diǎn)C旋轉(zhuǎn)到CD與OA的反向延長線相交時(shí),上述結(jié)論是否成立?請?jiān)趫D3中畫出圖形,若成立,請給于證明;若不成立,線段OD、OE與OC之間又有怎樣的數(shù)量關(guān)系?請寫出你的猜想,并給出證明。
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四個(gè)均由十六個(gè)小正方形組成的正方形網(wǎng)格中,各有一個(gè)三角形ABC,那么這四個(gè)三角形中,不是直角三角形的是( 。
A. B.
C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com