科目: 來源: 題型:
【題目】對于平面直角坐標(biāo)系xOy中的點(diǎn)P和⊙C,給出如下定義:若⊙C上存在兩個(gè)點(diǎn)A、B,使得點(diǎn)P在射線BC上,且∠APB∠ACB(0°<∠ACB<180°),則稱P為⊙C的依附點(diǎn).
(1)當(dāng)⊙O的半徑為1時(shí),
①已知點(diǎn)D(﹣1,0),E(0,﹣2),F(2.5,0),在點(diǎn)D、E、F中,⊙O的依附點(diǎn)是 ;
②點(diǎn)T在直線y=﹣x上,若T為⊙O的依附點(diǎn),求點(diǎn)T的橫坐標(biāo)t的取值范圍;
(2)⊙C的圓心在x軸上,半徑為2,直線y=﹣x+2與x軸、y軸分別交于點(diǎn)M、N,若線段MN上的所有點(diǎn)都是⊙C的依附點(diǎn),直接寫出圓心C的橫坐標(biāo)m的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在正方形ABCD中,E為BC邊上一動(dòng)點(diǎn)(不與點(diǎn)B、C重合),延長AE到點(diǎn)F,連接BF,且∠AFB=45°,G為DC邊上一點(diǎn),且DG=BE,連接DF,點(diǎn)F關(guān)于直線AB的對稱點(diǎn)為M,連接AM、BM.
(1)依據(jù)題意,補(bǔ)全圖形;
(2)求證:∠DAG=∠MAB;
(3)用等式表示線段BM、DF與AD的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線C1:y=ax2﹣2ax﹣3a(a≠0)和點(diǎn)A(0,﹣3),將點(diǎn)A向右平移2個(gè)單位,再向上平移5個(gè)單位,得到點(diǎn)B.
(1)求點(diǎn)B的坐標(biāo);
(2)求拋物線C1的對稱軸;
(3)把拋物線C1沿x軸翻折,得到一條新拋物線C2,拋物線C2與拋物線C1組成的圖象記為G,若圖象G與線段AB恰有一個(gè)交點(diǎn)時(shí),結(jié)合圖象,求a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】某學(xué)校在A、B兩個(gè)校區(qū)各有九年級學(xué)生200人,為了解這兩個(gè)校區(qū)九年級學(xué)生的教學(xué)學(xué)業(yè)水平的情況,進(jìn)行了抽樣調(diào)查,過程如下,請補(bǔ)充完整.
收集數(shù)據(jù):從A、B兩個(gè)校區(qū)各隨機(jī)抽取20名學(xué)生,進(jìn)行了數(shù)學(xué)學(xué)業(yè)水平測試,測試成績(百分制)如下:
A校區(qū) 86 74 78 81 76 75 86 70 75 90
75 79 81 70 74 80 87 69 83 77
B校區(qū) 80 73 70 82 71 82 83 93 77 80
81 93 81 73 88 79 81 70 40 83
整理、描述數(shù)據(jù) 按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):
成績x 人數(shù) 校區(qū) | 40≤x<50 | 50≤x<60 | 60≤x<70 | 70≤x<80 | 80≤x<90 | 90≤x≤100 |
A | 0 | 0 | 1 | 11 | 7 | 1 |
B |
(說明:成績80分及以上的學(xué)業(yè)水平優(yōu)秀,70﹣79分為淡定業(yè)水平良好,60﹣69分為學(xué)業(yè)水平合格,60分以下為學(xué)業(yè)水平不合格)
分析數(shù)據(jù) 兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如下表所示:
校區(qū) | 平均數(shù) | 中位數(shù) | 眾數(shù) |
A | 78.3 | m | 75 |
B | 78 | 80.5 | 81 |
其中m= ;
得出結(jié)論:a.估計(jì)B校區(qū)九年級數(shù)學(xué)學(xué)業(yè)水平在優(yōu)秀以上的學(xué)生人數(shù)為 ;
b.可以推斷出 校區(qū)的九年級學(xué)生的數(shù)學(xué)學(xué)業(yè)水平較高,理由為 (至少從兩個(gè)不同的角度說明推斷的合理性).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,M是圓中上一定點(diǎn),P是弦AB上一動(dòng)點(diǎn),過點(diǎn)A作射線MP的垂線交圓于點(diǎn)C,連接PC.已知AB=5cm,設(shè)A、P兩點(diǎn)間的距離為xcm,A、C兩點(diǎn)間的距離為y1cm,P、C兩點(diǎn)的距離為y2cm.小帥根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),分別對函數(shù)y1、y2隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.
下面是小帥的探究過程,請補(bǔ)充完整:
(1)按照表中自變量x的值進(jìn)行取點(diǎn),畫圖、測量,分別得到了y1、y2與x的幾組對應(yīng)值;
x/cm | 0 | 1 | 2 | 3 | 4 | 5 |
y1/cm | 2.55 | 3.15 | 3.95 | 4.76 | 4.95 | 4.30 |
y2/cm | 2.55 | 2.64 | 2.67 |
| 1.13 | 2.55 |
(2)在同一平面直角坐標(biāo)系xOy中,描出補(bǔ)全后的表中各組數(shù)值所對應(yīng)的點(diǎn)(x,y1),(x,y2),并畫出函數(shù)y1、y2的圖象;
(3)結(jié)合函數(shù)圖象,解決問題:在點(diǎn)P的運(yùn)動(dòng)過程中,當(dāng)AC與PC的差為最大值時(shí),AP的長度約為 cm.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l:y=kx+b(k≠0)與反比例函數(shù)y的圖象的一個(gè)交點(diǎn)為M(1,m).
(1)求m的值;
(2)直線l與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,連接OM,設(shè)△AOB的面積為S1,△MOB的面積為S2,若S1≥3S2,求k的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB是⊙O的直徑,P是BA延長線上一點(diǎn),過點(diǎn)P作⊙O的切線,切點(diǎn)為D,連接BD,過點(diǎn)B作射線PD的垂線,垂足為C.
(1)求證:BD平分∠ABC;
(2)如果AB=6,sin∠CBD,求PD的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,D、F分別是BC、AC邊的中點(diǎn),連接DA、DF,且AD=2DF,過點(diǎn)B作AD的平行線交FD的延長線于點(diǎn)E.
(1)求證:四邊形ABED為菱形;
(2)若BD=6,∠E=60°,求四邊形ABEF的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】下面是小明主設(shè)計(jì)的“作一個(gè)含30°角的直角三角形”的尺規(guī)作圖過程.
已知:直線l.
求作:△ABC,使得∠ACB=90°,∠ABC=30°.
作法:如圖,
①在直線l上任取兩點(diǎn)O,A;
②以點(diǎn)O為圓心,OA長為半徑畫弧,交直線l于點(diǎn)B;
③以點(diǎn)A為圓心,AO長為半徑畫弧,交于點(diǎn)C;
④連接AC,BC.
所以△ABC就是所求作的三角形.
根據(jù)小明設(shè)計(jì)的尺規(guī)作圖過程:
(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:在⊙O中,AB為直徑,
∴∠ACB=90°(① ),(填推理的依據(jù))
連接OC
∵OA=OC=AC,
∴∠CAB=60°,
∴∠ABC=30°(② ),(填推理的依據(jù))
查看答案和解析>>
科目: 來源: 題型:
【題目】學(xué)校運(yùn)動(dòng)會(huì)的立定跳遠(yuǎn)和1分鐘跳繩兩個(gè)單項(xiàng)比賽分成預(yù)賽和決賽兩個(gè)階段.下表為參加這兩項(xiàng)比賽的10名學(xué)生的預(yù)賽成績:
學(xué)生編號 成績 項(xiàng)目 | 3104 | 3508 | 3115 | 3406 | 3317 | 3413 | 3218 | 3307 | 3519 | 3210 |
立定跳遠(yuǎn)(單位:米) | 1.96 | 1.92 | 1.82 | 1.80 | 1.78 | 1.76 | 1.74 | 1.72 | 1.68 | 1.60 |
1分鐘跳繩(單位:次) | 163 | 175 | 160 | 163 | 172 | 170 | 165 |
在這10名學(xué)生中,同時(shí)進(jìn)入兩項(xiàng)決賽的只有6人,進(jìn)入立定跳遠(yuǎn)決賽的有8
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com