科目: 來源: 題型:
【題目】對于一元二次方程理解錯誤的是( )
A.這個方程是一元二次方程B.方程的解是
C.這個方程有兩個不相等的實(shí)數(shù)根D.這個方程可以用公式法求解
查看答案和解析>>
科目: 來源: 題型:
【題目】在Rt△ABC中,∠BCA=90°,∠A<∠ABC,D是AC邊上一點(diǎn),且DA=DB,O是AB的中點(diǎn),CE是△BCD的中線.
(1)如圖①,連接OC,證明∠OCE=∠OAC;
(2)如圖②,點(diǎn)M是射線EC上的一個動點(diǎn),將射線OM繞點(diǎn)O逆時針旋轉(zhuǎn)得射線ON,使∠MON=∠ADB,ON與射線CA交于點(diǎn)N.
①猜想并證明線段OM和線段ON之間的數(shù)量關(guān)系;
②若∠BAC=30°,BC=m,當(dāng)∠AON=15°時,請直接寫出線段ME的長度(用含m的式子表示).
查看答案和解析>>
科目: 來源: 題型:
【題目】某商場購進(jìn)一種每件價格為100元的新商品,在商場試銷發(fā)現(xiàn):銷售單價x(元/件)與每天銷售量y(件)之間滿足如圖所示的關(guān)系:(1)求出y與x之間的函數(shù)關(guān)系式;(2)如果商店銷售這種商品,每天要獲得1500元利潤,那么每件商品的銷售價應(yīng)定為多少元?(3)寫出每天的利潤W與銷售單價x之間的函數(shù)關(guān)系式;若你是商場負(fù)責(zé)人,會將售價定為多少,來保證每天獲得的利潤最大,最大利潤是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】為了創(chuàng)建文明城市,增強(qiáng)學(xué)生的環(huán)保意識.隨機(jī)抽取8名學(xué)生,對他們的垃圾分類投放情況進(jìn)行調(diào)查,這8名學(xué)生分別標(biāo)記為,其中“√”表示投放正確,“×”表示投放錯誤,統(tǒng)計情況如下表.
學(xué)生 垃圾類別 | ||||||||
廚余垃圾 | √ | √ | √ | √ | √ | √ | √ | √ |
可回收垃圾 | √ | × | √ | × | × | √ | √ | √ |
有害垃圾 | × | √ | × | √ | √ | × | × | √ |
其他垃圾 | × | √ | √ | × | × | √ | √ | √ |
(1)求8名學(xué)生中至少有三類垃圾投放正確的概率;
(2)為進(jìn)一步了解垃圾分類投放情況,現(xiàn)從8名學(xué)生里“有害垃圾”投放錯誤的學(xué)生中隨機(jī)抽取兩人接受采訪,試用標(biāo)記的字母列舉所有可能抽取的結(jié)果.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖①,在平行四邊形OABC中,以O為圓心,OA為半徑的圓與BC相切于點(diǎn)B,與OC相交于點(diǎn)D.
(1)求∠OAB的度數(shù);
(2)如圖②,點(diǎn)E在⊙O上,連接CE與⊙O交于點(diǎn)F,若EF=AB,求∠COE的度數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AB=AC=10cm,點(diǎn)D為△ABC內(nèi)一點(diǎn),∠BAD=15°,AD=6cm,連接BD,將△ABD繞點(diǎn)A逆時針方向旋轉(zhuǎn),使AB與AC重合,點(diǎn)D的對應(yīng)點(diǎn)E,連接DE,DE交AC于點(diǎn)F,則CF的長為________cm.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2﹣2ax+(a>0)與y軸交于點(diǎn)A,過點(diǎn)A作x軸的平行線交拋物線于點(diǎn)M.P為拋物線的頂點(diǎn).若直線OP交直線AM于點(diǎn)B,且M為線段AB的中點(diǎn),則a的值為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+2x+c與x軸交于A(﹣1,0)B(3,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求拋物線y=ax2+2x+c的解析式:;
(2)點(diǎn)D為拋物線上對稱軸右側(cè)、x軸上方一點(diǎn),DE⊥x軸于點(diǎn)E,DF∥AC交拋物線對稱軸于點(diǎn)F,求DE+DF的最大值;
(3)①在拋物線上是否存在點(diǎn)P,使以點(diǎn)A,P,C為頂點(diǎn),AC為直角邊的三角形是直角三角形?若存在,請求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由;
②點(diǎn)Q在拋物線對稱軸上,其縱坐標(biāo)為t,請直接寫出△ACQ為銳角三角形時t的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】把一個函數(shù)圖象上每個點(diǎn)的縱坐標(biāo)變?yōu)樵瓉淼牡箶?shù)(原函數(shù)圖象上縱坐標(biāo)為0的點(diǎn)除外)橫坐標(biāo)不變,可以得到另一個函數(shù)的圖象,我們稱這個過程為倒數(shù)變換.
例如:如圖1,將y=x的圖象經(jīng)過倒數(shù)變換后可得到y=的圖象.特別地,因?yàn)?/span>y=x圖象上縱坐標(biāo)為0的點(diǎn)是原點(diǎn),所以該點(diǎn)不作變換,因此y=的圖象上也沒有縱坐標(biāo)為0的點(diǎn).
(1)請在圖2中畫出y=﹣x﹣1的圖象和它經(jīng)過倒數(shù)變換后的圖象;
(2)觀察上述圖象,結(jié)合學(xué)過的關(guān)于函數(shù)圖象和性質(zhì)的知識.
①猜想:倒數(shù)變換得到的圖象和原函數(shù)的圖象之間可能有怎樣的聯(lián)系?寫出兩條即可.
②說理:請簡要解釋你其中一個猜想;
(3)設(shè)圖2中的圖象的交點(diǎn)為A,B,若點(diǎn)C的坐標(biāo)為(﹣1,m),△ABC的面積為6,求m的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,地面BD上兩根等長立柱AB,CD之間有一根繩子可看成拋物線y=0.1x2﹣0.8x+5.
(1)求繩子最低點(diǎn)離地面的距離;
(2)因?qū)嶋H需要,在離AB為5米的位置處用一根立柱MN撐起繩子(如圖2),使左邊拋物線F1的最低點(diǎn)距MN為1米,離地面2米,求MN的長;
(3)將立柱MN的長度提升為5米,通過調(diào)整MN的位置,使拋物線F2對應(yīng)函數(shù)的二次項(xiàng)系數(shù)始終為.設(shè)MN離AB的距離為m,拋物線F2的頂點(diǎn)離地面距離為k,但2≤k≤3時,求m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com