相關習題
 0  366188  366196  366202  366206  366212  366214  366218  366224  366226  366232  366238  366242  366244  366248  366254  366256  366262  366266  366268  366272  366274  366278  366280  366282  366283  366284  366286  366287  366288  366290  366292  366296  366298  366302  366304  366308  366314  366316  366322  366326  366328  366332  366338  366344  366346  366352  366356  366358  366364  366368  366374  366382  366461 

科目: 來源: 題型:

【題目】如圖點分別是邊長為4cm的等邊三角形動點,點從頂點沿向點運動,點同時從頂點沿運動,它們的速度都是,當?shù)竭_終點時停止運動,設運動時間為t秒,連接交于點M

1)求證:;

2)點在運動的過程中,變化嗎?若變化,請說明理由,若不變,則求出它的度數(shù);

3)當為何值時是直角三角形?

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,已知在ABC中,BC=AC,以BC為直徑的O與邊AB、AC分別交于點D、E,DFAC于點F.

(1)求證:點D是AB的中點;

(2)判斷DF與O的位置關系,并證明你的結論;

(3)若O的半徑為10,sinB=,求陰影部分面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】數(shù)學興趣小組想利用所學的知識了解某廣告牌的高度,已知CD2m.經(jīng)測量,得到其它數(shù)據(jù)如圖所示.其中∠CAH37°,∠DBH67°,AB10m,請你根據(jù)以上數(shù)據(jù)計算GH的長.(參考數(shù)據(jù),,

查看答案和解析>>

科目: 來源: 題型:

【題目】綠水青山就是金山銀山,為保護生態(tài)環(huán)境,A,B兩村準備各自清理所屬區(qū)域養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱,每村參加清理人數(shù)及總開支如下表:

村莊

清理養(yǎng)魚網(wǎng)箱人數(shù)/

清理捕魚網(wǎng)箱人數(shù)/

總支出/

A

15

9

57000

B

10

16

68000

(1)若兩村清理同類漁具的人均支出費用一樣,求清理養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱的人均支出費用各是多少元;

(2)在人均支出費用不變的情況下,為節(jié)約開支,兩村準備抽調40人共同清理養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱,要使總支出不超過102000元,且清理養(yǎng)魚網(wǎng)箱人數(shù)小于清理捕魚網(wǎng)箱人數(shù),則有哪幾種分配清理人員方案?

查看答案和解析>>

科目: 來源: 題型:

【題目】近兩年購物的支付方式日益增多,某數(shù)學興趣小組就此進行了抽樣調查,調查結果顯示,支付方式有:A微信.B支付寶.C銀行卡.D其他.該小組選取了某一超市一天之內購買者的支付方式進行統(tǒng)計,得到如下兩幅不完整的統(tǒng)計圖.

請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

1)本次調查中,一共調查了多少名購買者?

2)補全條形統(tǒng)計圖:A微信支付方式所在扇形的圓心角為   度;

3)若該超市這一天內有2000名購買者,請你估計B種支付方式的購買者有多少人?

查看答案和解析>>

科目: 來源: 題型:

【題目】連接正方形四邊的中點所構成的正方形,我們稱其原正方形的中點正方形,如圖,已知正方形的中點正方形,再作正方形的中點正方形,這樣不斷下去,第n次所做的中點正方形,若正方形的邊長為1,若設中點正方形的面積為,則___________

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在邊長為2的正方形ABCD中,EF分別為BC、CD的中點,連接AE,BF交于點G,將BCF沿BF對折,得到BPF,延長FPBA延長線于點Q,下列結論正確都有(  )個.

QBQF;②AEBF;③;④;④S四邊形ECFG2SBGE

A.5B.4C.3D.2

查看答案和解析>>

科目: 來源: 題型:

【題目】綜合與探究

如圖,拋物線軸交于兩點(點在點的左側),與軸交于點,其對稱軸與拋物線交于點,與軸交于點

1)求點,的坐標;

2)點為拋物線對稱軸上的一個動點,從點出發(fā),沿射線以每秒2個單位長度的速度運動,過點軸的平行線交拋物線于,兩點(點在點的左邊).設點的運動時間為

①當為何值時,以點,,,為頂點的四邊形是平行四邊形;

②連接,在點運動的過程中,是否存在點,使得,若存在,求出點的坐標:若不存在,請說明理由;

③點軸上,點為坐標平面內一點,以線段為對角線作菱形,當時,請直接寫出的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】綜合與實踐

1)(探索發(fā)現(xiàn))在. ,,點為直線上一動點(點不與點,重合),過點交直線于點,將繞點順時針旋轉得到,連接

如圖(1),當點在線段上,且時,試猜想:

之間的數(shù)量關系:______;

______

2)(拓展探究)

如圖(2),當點在線段上,且時,判斷之間的數(shù)量關系及的度數(shù),請說明理由.

3)(解決問題)

如圖(3),在中,,,,點在射線上,將繞點順時針旋轉得到,連接.當時,直接寫出的長.

查看答案和解析>>

科目: 來源: 題型:

【題目】請閱讀下列材料,并完成相應的任務.

三等分任意角問題是數(shù)學史上一個著名的問題,直到1837年,數(shù)學家才證明了三等分任意角是不能用尺規(guī)完成的.

在探索中,出現(xiàn)了不同的解決問題的方法

方法一:

如圖(1),四邊形ABCD是矩形,FDA延長線上一點,GCF上一點,CFAB交于點E,且∠ACG=∠AGC,∠GAF=∠F,此時∠ECBACB

方法二:

數(shù)學家帕普斯借助函數(shù)給出一種三等分銳角的方法(如圖(2)):將給定的銳角∠AOB置于平面直角坐標系中,邊OBx軸上,邊OA與函數(shù)y的圖象交于點P,以點P為圓心,以2OP長為半徑作弧交圖象于點R.過點Px軸的平行線,過點Ry軸的平行線,兩直線相交于點M,連接OM得到∠AOB,過點PPHx軸于點H,過點RRQPH于點Q,則∠MOBAOB

1)在方法一中,若∠ACF40°,GF4,求BC的長.

2)完成方法二的證明.

查看答案和解析>>

同步練習冊答案