在數(shù)列{an}中,若an2-an+12=p(n≥1,n∈N*,p為常數(shù)),則稱{an}為“等方差數(shù)列”,下列是對“等方差數(shù)列”的判斷:
①若{an}是等方差數(shù)列,則{an2}是等差數(shù)列;  
②{(-1)n}是等方差數(shù)列;
③若{an}是等方差數(shù)列,則{akn}(k∈N*,k為常數(shù))也是等方差數(shù)列.
其中真命題的序號是(  )
A、②B、①②C、②③D、①②③
考點:等差數(shù)列的性質(zhì)
專題:計算題,等差數(shù)列與等比數(shù)列
分析:根據(jù)“等方差數(shù)列”的定義,數(shù)列{an}中,若an2-an+12=p(n≥1,n∈N*,p為常數(shù)),則{an}稱為“等方差數(shù)列”,我們逐一判斷①②③中的三個數(shù)列是否滿足等方差數(shù)列的定義,可得答案.
解答: 解:①∵{an}是等方差數(shù)列,
∴an2-an-12=p(p為常數(shù))
∴{an2}是等差數(shù)列,故①正確;
②數(shù)列{(-1)n}中,an2-an-12=[(-1)n]2-[(-1)n-1]2=0,
∴{(-1)n}是等方差數(shù)列;故②正確;
③數(shù)列{an}中的項列舉出來是,a1,a2,…,ak,…,a2k,…
數(shù)列{akn}中的項列舉出來是,ak,a2k,…,a3k,…,
∵(ak+12-ak2)=(ak+22-ak+12)=(ak+32-ak+22)=…=(a2k2-a2k-12)=p
∴(ak+12-ak2)+(ak+22-ak+12)+(ak+32-ak+22)+…+(a2k2-a2k-12)=kp
∴(akn+12-akn2)=kp
∴{akn}(k∈N*,k為常數(shù))是等方差數(shù)列;故③正確;
故選:D.
點評:本題考查等差數(shù)列的定義及其應(yīng)用,解題時要注意掌握數(shù)列的概念,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若x∈(1,10),a=lgx,b=2lgx,c=lg2x,d=lg(lgx),則( 。
A、a<b<c<d
B、d<c<a<b
C、d<b<a<c
D、b<d<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,AC=2
2
,BC=2,則角A的取值范圍是( 。
A、(
π
6
,  
π
3
)
B、(0,  
π
6
)
C、(0,  
π
4
]
D、[
π
4
,  
π
2
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合P={x|x2<4},  Q={x|
x
<4}
,則P∩Q=( 。
A、{x|x<2}B、{x|0≤x<2}
C、PD、Q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將二進制數(shù)1101化為十進制數(shù)為(  )
A、10B、11C、12D、13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中既不是奇函數(shù)也不是偶函數(shù)的是( 。
A、y=2|x|
B、y=lg(
x2+1
-x)
C、y=2x-2-x
D、
3
5
+
4
5
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={1,3,a},B={1,2}且A?B,則a的值為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若角α與角β的終邊關(guān)于原點成中心對稱,則α與β的關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(ax2+bx+c)ex在x=1處取極值,且在點(0,f(0))處的切線方程為4x-y+5=0
(1)求a,b,c的值
(2)求函數(shù)f(x)的單調(diào)區(qū)間,并指出f(x)在x=1處取值是極大值還是極小值.

查看答案和解析>>

同步練習(xí)冊答案