若x∈(1,10),a=lgx,b=2lgx,c=lg2x,d=lg(lgx),則(  )
A、a<b<c<d
B、d<c<a<b
C、d<b<a<c
D、b<d<c<a
考點:對數(shù)值大小的比較
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由于x∈(1,10),可得lgx∈(0,1),d=lg(lgx)<0,c=lg2x<lgx=a<2lgx=b,即可得出.
解答: 解:∵x∈(1,10),
∴l(xiāng)gx∈(0,1),
∴d=lg(lgx)<0,c=lg2x<lgx=a<2lgx=b,
∴d<c<a<b.
故選:B.
點評:本題考查了對數(shù)的運算性質(zhì)、不等式的性質(zhì),考查了推理能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

頂點在原點,經(jīng)過圓C:x2+y2-2x+2
2
y=0的圓心且準線與x軸垂直的拋物線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知k∈[-2,1],則k的值使得過A(1,1)可以作兩條直線與圓 x2+y2+kx-2y-
5
4
k=0相切的概率等于( 。
A、
1
3
B、
1
2
C、
2
3
D、
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知x-3+1=a(a為常數(shù)),求a2-2ax-3+x-6的值.
(2)求值:log623+log62log618+21+
1
2
log25
log623+(log62)•(log618)+21+
1
2
log25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把一枚硬幣任意拋擲三次,事件A=“至少一次出現(xiàn)反面”,事件B=“恰有一次出現(xiàn)正面”,則P(B|A)=(  )
A、
1
7
B、
2
7
C、
3
7
D、
4
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算下列各式
(1)(
27
8
 -
2
3
-(
49
9
0.5+(0.008) -
2
3
×
2
25
+(
3
4
0;
(2)
lg5•lg8000+(lg2
3
)2
lg600-
1
2
lg36-
1
2
lg0.01

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)在R上滿足f(x)=2f(-x)-x2則曲線y=f(x)在點(1,f(1))處的切線方程是( 。
A、y=x
B、y=2x-1
C、y=3x-2
D、y=-2x+3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x-
p
x
在區(qū)間(1,+∞)上是增函數(shù),則實數(shù)p的取值范圍是(  )
A、(-∞,-1]
B、(-∞,1]
C、[-1,+∞)
D、[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,若an2-an+12=p(n≥1,n∈N*,p為常數(shù)),則稱{an}為“等方差數(shù)列”,下列是對“等方差數(shù)列”的判斷:
①若{an}是等方差數(shù)列,則{an2}是等差數(shù)列;  
②{(-1)n}是等方差數(shù)列;
③若{an}是等方差數(shù)列,則{akn}(k∈N*,k為常數(shù))也是等方差數(shù)列.
其中真命題的序號是( 。
A、②B、①②C、②③D、①②③

查看答案和解析>>

同步練習(xí)冊答案