【題目】已知雙曲線:的離心率,其左焦點到此雙曲線漸近線的距離為.
(1)求雙曲線的方程;
(2)若過點的直線交雙曲線于兩點,且以為直徑的圓過原點,求圓的圓心到拋物線的準線的距離.
【答案】(1)(2)或
【解析】
(1)由題意可得,解出即可;
(2)由題意設直線的方程為,聯(lián)立直線與橢圓的方程并消元,設,,可得韋達定理的結(jié)論,又以為直徑的圓過原點得,代入可求得,根據(jù)中點坐標公式求得圓的圓心的縱坐標,從而可求出答案.
解:(1)由題意可得,
解得,
∴雙曲線的方程為;
(2)易知直線與軸不重合,設直線的方程為,
聯(lián)立方程,可得,
上述方程式的判別式,以及(否則直線不能與雙曲線交兩點),
設,,則,,
同時可得,
以為直徑的圓過原點,知,
結(jié)合,可知,,
∴圓的圓心即中點的縱坐標為,
∵拋物線的準線方程為,
∴圓的圓心到拋物線的準線距離為或.
科目:高中數(shù)學 來源: 題型:
【題目】今年,新型冠狀病毒來勢兇猛,老百姓一時間“談毒色變”,近來,有關喝白酒可以預防病毒的說法一直在民間流傳,更有人拿出“醫(yī)”字的繁體字“醫(yī)”進行解讀為:醫(yī)治瘟疫要喝酒,為了調(diào)查喝白酒是否有助于預防病毒,我們調(diào)查了1000人的喝酒生活習慣與最終是否得病進行了統(tǒng)計,表格如下:
每周喝酒量(兩) | |||||
人數(shù) | 100 | 300 | 450 | 100 |
規(guī)定:①每周喝酒量達到4兩的叫常喝酒人,反之叫不常喝酒人;
②每周喝酒量達到8兩的叫有酒癮的人.
(1)求值,從每周喝酒量達到6兩的人中按照分層抽樣選出6人,再從這6人中選出2人,求這2人中無有酒癮的人的概率;
(2)請通過上述表格中的統(tǒng)計數(shù)據(jù),填寫完下面的列聯(lián)表,并通過計算判斷是否能在犯錯誤的概率不超過0.1的前提下認為是否得病與是否常喝酒有關?并對民間流傳的說法做出你的判斷.
常喝酒 | 不常喝酒 | 合計 | |
得病 | |||
不得病 | 250 | 650 | |
合計 |
參考公式:,其中
0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知橢圓C:(a>b>0)的短軸長為2,F1,F2分別是橢圓C的左、右焦點,過點F2的動直線與橢圓交于點P,Q,過點F2與PQ垂直的直線與橢圓C交于A、B兩點.當直線AB過原點時,PF1=3PF2.
(1)求橢圓的標準方程;
(2)若點H(3,0),記直線PH,QH,AH,BH的斜率依次為,,,.
①若,求直線PQ的斜率;
②求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在國家批復成立江北新區(qū)后,南京市政府規(guī)劃在新區(qū)內(nèi)的一條形地塊上新建一個全民健身中心,規(guī)劃區(qū)域為四邊形ABCD,如圖,,點B在線段OA上,點C、D分別在射線OP與AQ上,且A和C關于BD對稱.已知.
(1)若,求BD的長;
(2)問點C在何處時,規(guī)劃區(qū)域的面積最小?最小值是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了了解運動健身減肥的效果,某健身房調(diào)查了20名肥胖者,健身之前他們的體重(單位:)情況如柱形圖1所示,經(jīng)過四個月的健身后,他們的體重情況如柱形圖2所示.對比健身前后,關于這20名肥胖者,下面結(jié)論正確的是( )
A.他們健身后,體重在區(qū)間內(nèi)的人數(shù)增加了2個
B.他們健身后,體重在區(qū)間內(nèi)的人數(shù)沒有改變
C.因為體重在內(nèi)所占比例沒有發(fā)生變化,所以說明健身對體重沒有任何影響
D.他們健身后,原來體重在區(qū)間內(nèi)的肥胖者體重都有減少
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)討論的極值點的個數(shù);
(2)設函數(shù),,為曲線上任意兩個不同的點,設直線的斜率為,若恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】廠家在產(chǎn)品出廠前,需對產(chǎn)品做檢驗,第一次檢測廠家的每件產(chǎn)品合格的概率為,如果合格,則可以出廠;如果不合格,則進行技術處理,處理后進行第二次檢測.每件產(chǎn)品的合格率為,如果合格,則可以出廠,不合格則當廢品回收.
求某件產(chǎn)品能出廠的概率;
若該產(chǎn)品的生產(chǎn)成本為元/件,出廠價格為元/件,每次檢測費為元/件,技術處理每次元/件,回收獲利元/件.假如每件產(chǎn)品是否合格相互獨立,記為任意一件產(chǎn)品所獲得的利潤,求隨機變量的分布列與數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中e是自然對數(shù)的底數(shù).
(1)若,證明:;
(2)若時,都有,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com