【題目】設(shè)是函數(shù)定義域內(nèi)的一個(gè)子集,若存在,使得成立,則稱的一個(gè)“不動(dòng)點(diǎn)”,也稱在區(qū)間上存在不動(dòng)點(diǎn).

設(shè)函數(shù),

(1)若,求函數(shù)的不動(dòng)點(diǎn);

(2)若函數(shù)上不存在不動(dòng)點(diǎn),求實(shí)數(shù)的取值范圍.

【答案】10;(2

【解析】

1)根據(jù)新定義,當(dāng)時(shí),,求出,即可得出函數(shù)的不動(dòng)點(diǎn);

2)由于函數(shù)上不存在不動(dòng)點(diǎn),則在區(qū)間上無(wú)解,即上無(wú)解,利用換元法,令,,轉(zhuǎn)化為在區(qū)間上無(wú)解,構(gòu)造新函數(shù)并求出單調(diào)區(qū)間,結(jié)合函數(shù)的恒成立問(wèn)題,即可求出實(shí)數(shù)的取值范圍.

解:(1)根據(jù)題目給出的“不動(dòng)點(diǎn)”的定義,可知:

當(dāng)時(shí),

,所以,所以,

所以函數(shù)的不動(dòng)點(diǎn)為0

(2)根據(jù)已知,得在區(qū)間上無(wú)解,

所以上無(wú)解,

,,所以,

在區(qū)間上無(wú)解,

所以在區(qū)間上無(wú)解,

設(shè),所以在區(qū)間上單調(diào)遞增,

,

所以,所以,

又因?yàn)?/span>在區(qū)間上恒成立,

所以在區(qū)間上恒成立,

設(shè),所以在區(qū)間上單調(diào)遞增,

,所以,所以

綜上,實(shí)數(shù)的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)訄A與圓外切且與軸相切.

1)求圓心的軌跡的方程;

2)過(guò)作斜率為的直線交曲線,兩點(diǎn),

①若,求直線的方程;

②過(guò),兩點(diǎn)分別作曲線的切線,,求證:的交點(diǎn)恒在一條定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在全面抗擊新冠肺炎疫情這一特殊時(shí)期,我市教育局提出“停課不停學(xué)”的口號(hào),鼓勵(lì)學(xué)生線上學(xué)習(xí).某校數(shù)學(xué)教師為了調(diào)查高三學(xué)生數(shù)學(xué)成績(jī)與線上學(xué)習(xí)時(shí)間之間的相關(guān)關(guān)系,對(duì)高三年級(jí)隨機(jī)選取45名學(xué)生進(jìn)行跟蹤問(wèn)卷,其中每周線上學(xué)習(xí)數(shù)學(xué)時(shí)間不少于5小時(shí)的有19人,余下的人中,在檢測(cè)考試中數(shù)學(xué)平均成績(jī)不足120分的占,統(tǒng)計(jì)成績(jī)后得到如下列聯(lián)表:

分?jǐn)?shù)不少于120

分?jǐn)?shù)不足120

合計(jì)

線上學(xué)習(xí)時(shí)間不少于5小時(shí)

4

19

線上學(xué)習(xí)時(shí)間不足5小時(shí)

合計(jì)

45

1)請(qǐng)完成上面列聯(lián)表;并判斷是否有99%的把握認(rèn)為“高三學(xué)生的數(shù)學(xué)成績(jī)與學(xué)生線上學(xué)習(xí)時(shí)間有關(guān)”;

2)①按照分層抽樣的方法,在上述樣本中從分?jǐn)?shù)不少于120分和分?jǐn)?shù)不足120分的兩組學(xué)生中抽取9名學(xué)生,設(shè)抽到不足120分且每周線上學(xué)習(xí)時(shí)間不足5小時(shí)的人數(shù)是,求的分布列(概率用組合數(shù)算式表示);

②若將頻率視為概率,從全校高三該次檢測(cè)數(shù)學(xué)成績(jī)不少于120分的學(xué)生中隨機(jī)抽取20人,求這些人中每周線上學(xué)習(xí)時(shí)間不少于5小時(shí)的人數(shù)的期望和方差.

(下面的臨界值表供參考)

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】追求人類與生存環(huán)境的和諧發(fā)展是中國(guó)特色社會(huì)主義生態(tài)文明的價(jià)值取向.為了改善空氣質(zhì)量,某城市環(huán)保局隨機(jī)抽取了一年內(nèi)100天的空氣質(zhì)量指數(shù)(AQI)的檢測(cè)數(shù)據(jù),結(jié)果統(tǒng)計(jì)如表:

AQI

空氣質(zhì)量

優(yōu)

輕度污染

中度污染

重度污染

重度污染

天數(shù)

6

14

18

27

25

10

1)從空氣質(zhì)量指數(shù)屬于[0,50],(50,100]的天數(shù)中任取3天,求這3天中空氣質(zhì)量至少有2天為優(yōu)的概率;

2)已知某企業(yè)每天因空氣質(zhì)量造成的經(jīng)濟(jì)損失y(單位:元)與空氣質(zhì)量指數(shù)x的關(guān)系式為,假設(shè)該企業(yè)所在地7月與8月每天空氣質(zhì)量為優(yōu)、良、輕度污染、中度污染、重度污染、嚴(yán)重污染的概率分別為.9月每天的空氣質(zhì)量對(duì)應(yīng)的概率以表中100天的空氣質(zhì)量的頻率代替.

i)記該企業(yè)9月每天因空氣質(zhì)量造成的經(jīng)濟(jì)損失為X元,求X的分布列;

ii)試問(wèn)該企業(yè)7月、8月、9月這三個(gè)月因氣質(zhì)量造成的經(jīng)濟(jì)損失總額的數(shù)學(xué)期望是否會(huì)超過(guò)2.88萬(wàn)元?說(shuō)明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)為實(shí)數(shù),給出命題;命題:函數(shù)的值域?yàn)?/span>

1)若為真命題,求實(shí)數(shù)的取值范圍;

2)若為真,為假,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠生產(chǎn)甲、乙兩種產(chǎn)品均需用三種原料,一件甲產(chǎn)品需要原料,原料原料,一件乙產(chǎn)品需要原料,原料,原料,出售一件甲產(chǎn)品可獲利7萬(wàn)元,出售一件乙產(chǎn)品可獲利6萬(wàn)元,現(xiàn)有原料,原料原料,請(qǐng)問(wèn)該如何安排生產(chǎn)可使得利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)fx)的導(dǎo)函數(shù).

1)若a=b=c,f4=8,求a的值;

2)若ab,b=c,且fx)和的零點(diǎn)均在集合中,求fx)的極小值;

3)若,且fx)的極大值為M,求證:M

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2015秋?谛<(jí)期中)直線l過(guò)點(diǎn)(1,2)和第一、二、四象限,若直線l的橫截距與縱截距之和為6,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】趙爽是我國(guó)古代數(shù)學(xué)家、天文學(xué)家,大約公元222年,趙爽為《周碑算經(jīng)》一書(shū)作序時(shí),介紹了勾股圓方圖,又稱趙爽弦圖(以弦為邊長(zhǎng)得到的正方形是由4個(gè)全等的直角三角形再加上中間的一個(gè)小正方形組成的,如圖(1)),類比趙爽弦圖,可類似地構(gòu)造如圖(2)所示的圖形,它是由3個(gè)全等的三角形與中間的一個(gè)小正三角形組成的一個(gè)大正三角形,設(shè),若在大正三角形中隨機(jī)取一點(diǎn),則此點(diǎn)取自小正三角形的概率為(

A.B.

C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案