【題目】在直角坐標系中,曲線的普通方程為,以原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(I)求的參數(shù)方程與的直角坐標方程;

(II)射線交于異于極點的點,與的交點為,求.

【答案】(I)的參數(shù)方程為為參數(shù)),的直角坐標方程為;(II).

【解析】

(I)由題意,可得曲線是以(1,0)為圓心,1為半徑的圓,即可求得曲線的參數(shù)方程,根據(jù)極坐標與直角坐標的互化公式,即可求得曲線的直角坐標方程;

(II)由(I)得到曲線的極坐標方程為,將射線代入曲線的方程,求得關(guān)于的方程,根據(jù)極徑的幾何意義,即可求解.

(I)由,得.所以曲線是以(1,0)為圓心,

1為半徑的圓,所以曲線的參數(shù)方程為為參數(shù)).

,得,所以,則曲線的直角坐標方程為.

(II)由(I)易得曲線的極坐標方程為,則射線與曲線的交點的極徑為,

射線與曲線的交點的極徑滿足,

解得.

所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的參數(shù)方程為為參數(shù)),曲線的極坐標方程為.

(1)將曲線的參數(shù)方程化為普通方程,將曲線的極坐標方程化為直角坐標方程.

(2)曲線,是否相交?若相交,請求出公共弦長;若不相交,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年11月6日-11日,第十二屆中國國際航空航天博覽會在珠海舉行。在航展期間,從珠海市區(qū)開車前往航展地有甲、乙兩條路線可走,已知每輛車走路線甲堵車的概率為,走路線乙堵車的概率為p,若現(xiàn)在有A,B兩輛汽車走路線甲,有一輛汽車C走路線乙,且這三輛車是否堵車相互之間沒有影響。

(1)若這三輛汽車中恰有一輛汽車被堵的概率為,求p的值。

(2)在(1)的條件下,求這三輛汽車中被堵車輛的輛數(shù)X的分布列和數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線Cy2=2px過點P(1,1).過點(0, )作直線l與拋物線C交于不同的兩點M,N,過點Mx軸的垂線分別與直線OP,ON交于點A,B,其中O為原點.

(Ⅰ)求拋物線C的方程,并求其焦點坐標和準線方程;

(Ⅱ)求證:A為線段BM的中點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,O為坐標原點,點,Q為平面上的動點,且,線段的中垂線與線段交于點P

的值,并求動點P的軌跡E的方程;

若直線l與曲線E相交于A,B兩點,且存在點其中A,B,D不共線,使得,證明:直線l過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等比數(shù)列的公比為,前項和.

(1)求的取值范圍;

(2)設(shè),記的前項和為,試比較的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年9月支付寶宣布在肯德基的KPRO餐廳上線刷臉支付,也即用戶可以不用手機,單單通過刷臉就可以完成支付寶支付,這也是刷臉支付在全球范圍內(nèi)的首次商用試點.某市隨機抽查了每月用支付寶消費金額不超過3000元的男女顧客各300人,調(diào)查了他們的支付寶使用情況,得到如下頻率分布直方圖:

若每月利用支付寶支付金額超過2千元的顧客被稱為“支付寶達人”, 利用支付寶支付金額不超過2千元的顧客稱為“非支付寶達人”.

(I)若抽取的“支付寶達人”中女性占120人,請根據(jù)條件完成上面的列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.001的前提下認為“支付寶達人”與性別有關(guān).

(II)支付寶公司為了進一步了解這600人的支付寶使用體驗情況和建議,從“非支付寶達人” “支付寶達人”中用分層抽樣的方法抽取8人.若需從這8人中隨機選取2人進行問卷調(diào)查,求至少有1人是“支付寶達人”的概率.

附:參考公式與參考數(shù)據(jù)如下

,其中.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

在平面直角坐標系中,N為圓C上的一動點,點D1,0),點MDN的中點,點P在線段CN上,且.

)求動點P表示的曲線E的方程;

)若曲線Ex軸的交點為,當動點PA,B不重合時,設(shè)直線的斜率分別為,證明:為定值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的長軸長為4,離心率為

(1)求橢圓的標準方程;

(2)過作動直線交橢圓兩點,為平面上一點,直線的斜率分別為,且滿足,問點是否在某定直線上運動,若存在,求出該直線方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案