【題目】已知四棱錐中,,,側(cè)面底面.
(1)作出平面與平面的交線,并證明平面;
(2)求點(diǎn)到平面的距離.
【答案】(1)證明見(jiàn)解析;(2).
【解析】
(1)首先延長(zhǎng)與相交于點(diǎn),連結(jié),得到為平面與平面的交線.根據(jù)平面平面的性質(zhì)得到,根據(jù)計(jì)算長(zhǎng)度得到,即,再利用線面垂直的判定即可證明平面.
(2)設(shè)點(diǎn)到平面的距離為,利用三棱錐的等體積轉(zhuǎn)換得到,即可求出的值.
(1)延長(zhǎng)與相交于點(diǎn),連結(jié),如圖所示:
則即為平面與平面的交線.
因?yàn)閭?cè)面底面,且,
所以側(cè)面
又側(cè)面,所以.
在中,,,
所以,分別為,的中點(diǎn)
所以,即:,所以.
又,所以平面,即平面.
(2)
取的中點(diǎn),連結(jié),則,
由(1)知平面,所以平面,.
又平面,所以,到平面的距離相等.
因?yàn)?/span>,
所以.
因?yàn)?/span>.
設(shè)點(diǎn)到平面的距離為,
則三棱錐的體積
又,所以,所以
故點(diǎn)到平面的距離為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為
(1)在曲線上任取一點(diǎn),連接,在射線上取一點(diǎn),使,求點(diǎn)軌跡的極坐標(biāo)方程;
(2)在曲線上任取一點(diǎn),在曲線上任取一點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程是(是參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,其傾斜角為.
(Ⅰ)證明直線恒過(guò)定點(diǎn),并寫(xiě)出直線的參數(shù)方程;
(Ⅱ)在(Ⅰ)的條件下,若直線與曲線交于,兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線上一點(diǎn)到焦點(diǎn)的距離.
(1)求拋物線的方程;
(2)過(guò)點(diǎn)引圓的兩條切線,切線與拋物線的另一交點(diǎn)分別為,線段中點(diǎn)的橫坐標(biāo)記為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直四棱柱的底面是直角梯形,,,,分別是棱,上的動(dòng)點(diǎn),且,,.
(1)證明:無(wú)論點(diǎn)怎樣運(yùn)動(dòng),四邊形都為矩形;
(2)當(dāng)時(shí),求幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù).
(1)若函數(shù)在處取得極值,求a的值;
(2)若函數(shù)的圖象在直線圖象的下方,求a的取值范圍;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)若函數(shù)在處取得極值1,證明:
(2)若恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論在上極值點(diǎn)的個(gè)數(shù);
(2)若是函數(shù)的兩個(gè)極值點(diǎn),且恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為緩解高三學(xué)生的高考?jí)毫,?jīng)常舉行一些心理素質(zhì)綜合能力訓(xùn)練活動(dòng),經(jīng)過(guò)一段時(shí)間的訓(xùn)練后從該年級(jí)800名學(xué)生中隨機(jī)抽取100名學(xué)生進(jìn)行測(cè)試,并將其成績(jī)分為、、、、五個(gè)等級(jí),統(tǒng)計(jì)數(shù)據(jù)如圖所示(視頻率為概率),根據(jù)圖中抽樣調(diào)查的數(shù)據(jù),回答下列問(wèn)題:
(1)試估算該校高三年級(jí)學(xué)生獲得成績(jī)?yōu)?/span>的人數(shù);
(2)若等級(jí)、、、、分別對(duì)應(yīng)100分、90分、80分、70分、60分,學(xué)校要求當(dāng)學(xué)生獲得的等級(jí)成績(jī)的平均分大于90分時(shí),高三學(xué)生的考前心理穩(wěn)定,整體過(guò)關(guān),請(qǐng)問(wèn)該校高三年級(jí)目前學(xué)生的考前心理穩(wěn)定情況是否整體過(guò)關(guān)?
(3)以每個(gè)學(xué)生的心理都培養(yǎng)成為健康狀態(tài)為目標(biāo),學(xué)校決定對(duì)成績(jī)等級(jí)為的16名學(xué)生(其中男生4人,女生12人)進(jìn)行特殊的一對(duì)一幫扶培訓(xùn),從按分層抽樣抽取的4人中任意抽取2名,求恰好抽到1名男生的概率..
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com