【題目】在平面直角坐標系中,曲線的參數(shù)方程是是參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為,其傾斜角為

)證明直線恒過定點,并寫出直線的參數(shù)方程;

)在()的條件下,若直線與曲線交于,兩點,求的值.

【答案】)證明見解析,是參數(shù));(

【解析】

1)利用極坐標與直角坐標的互化將直線方程化為普通方程,從而可求出定點,再將直線方程寫成參數(shù)方程的形式即可.

2)將曲線化為直角坐標方程,再將直線的參數(shù)方程代入曲線方程,整理成關于的一元二次方程的形式,利用韋達定理以及參數(shù)的幾何意義即可求解.

)由極坐標與直角坐標互化公式

可得直線的方程為:,即

故直線恒過定點

所以直線的參數(shù)方程為是參數(shù))

)由曲線的參數(shù)方程是參數(shù))

得曲線的普通方程:,即

代入上式整理得:

設兩根為,則

兩點對應的參數(shù)分別為,故

的值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】下列四個命題,其中正確的是(

A.對分類變量的隨機變量的觀測值來說,越小,有關系可信程度越大

B.殘差點比較均勻地落在水平帶狀區(qū)域內(nèi),帶狀區(qū)域越窄,則模型擬合精度越高

C.相關指數(shù)越小,則殘差平方和越大,模型的擬合效果越好

D.兩個隨機變量相關性越強,則相關系數(shù)的絕對值越接近

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù)在其定義域內(nèi)單調(diào)遞增,求實數(shù)的最大值;

2)若存在正實數(shù)對,使得當時,能成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了響應黨的十九大所提出的教育教學改革,某校啟動了數(shù)學教學方法的探索,學校將高一年級部分生源情況基本相同的學生分成甲、乙兩個班,每班40人,甲班按原有傳統(tǒng)模式教學,乙班實施自主學習模式.經(jīng)過一年的教學實驗,將甲、乙兩個班學生一年來的數(shù)學成績?nèi)∑骄鶖?shù),兩個班學生的平均成績均在,按照區(qū)間,,,進行分組,繪制成如下頻率分布直方圖,規(guī)定不低于80分(百分制)為優(yōu)秀.

0.10

0.05

0.025

2.706

3.841

5.024

1)完成表格,并判斷是否有以上的把握認為數(shù)學成績優(yōu)秀與教學改革有關;

甲班

乙班

合計

大于等于80分的人數(shù)

小于80分的人數(shù)

合計

2)從乙班,分數(shù)段中,按分層抽樣隨機抽取7名學生座談,從中選三位同學發(fā)言,記來自發(fā)言的人數(shù)為隨機變量,求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)處的切線方程為.

(1)求實數(shù)的值;

(2)若有兩個極值點,,求的取值范圍并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】每年10月中上旬是小麥的最佳種植時間,但小麥的發(fā)芽會受到土壤、氣候等多方面因素的影響.某科技小組為了解晝夜溫差的大小與小麥發(fā)芽的多少之間的關系,在不同的溫差下統(tǒng)計了100顆小麥種子的發(fā)芽數(shù),得到了如下數(shù)據(jù):

溫差

8

10

11

12

13

發(fā)芽數(shù)(顆)

79

81

85

86

90

(1)請根據(jù)統(tǒng)計的最后三組數(shù)據(jù),求出關于的線性回歸方程

(2)若由(1)中的線性回歸方程得到的估計值與前兩組數(shù)據(jù)的實際值誤差均不超過兩顆,則認為線性回歸方程是可靠的,試判斷(1)中得到的線性回歸方程是否可靠;

(3)若100顆小麥種子的發(fā)芽率為顆,則記為的發(fā)芽率,當發(fā)芽率為時,平均每畝地的收益為元,某農(nóng)場有土地10萬畝,小麥種植期間晝夜溫差大約為,根據(jù)(1)中得到的線性回歸方程估計該農(nóng)場種植小麥所獲得的收益.

附:在線性回歸方程中,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左頂點為,左、右焦點分別為,離心率為是橢圓上的一個動點(不與左、右頂點重合),且的周長為6,點關于原點的對稱點為,直線交于點.

1)求橢圓方程;

2)若直線與橢圓交于另一點,且,求點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐中,,,側面底面

(1)作出平面與平面的交線,并證明平面;

(2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,離心率為,是橢圓上一點,且面積的最大值為1.

1)求橢圓的方程;

2)過的直線交橢圓于兩點,求的取值范圍;

查看答案和解析>>

同步練習冊答案