【題目】(導(dǎo)學(xué)號(hào):05856290)[選修4-5:不等式選講]

已知函數(shù)f(x)=|xa|+|x-2a|.

(Ⅰ)對(duì)任意x∈R,不等式f(x)>1成立,求實(shí)數(shù)a的取值范圍;

(Ⅱ)當(dāng)a=-1時(shí),解不等式f(x)<3.

【答案】(1) a>1或a<-1 (2) (-3,0).

【解析】試題分析:(Ⅰ)f(x)=|x﹣a|+|x﹣2a|≥|(x﹣a)﹣(x﹣2a)|=|a|,且f(x)1對(duì)任意xR成立,可得|a|>1,求實(shí)數(shù)a的取值范圍;

(Ⅱ)當(dāng)a=﹣1時(shí),分類(lèi)討論,解不等式f(x)<3.

試題解析:

(Ⅰ)∵f(x)=|xa|+|x-2a|

≥|(xa)-(x-2a)|=|a|,

f(x)>1對(duì)任意x∈R成立,

∴|a|>1,∴a>1或a<-1.

(Ⅱ)a=-1時(shí),f(x)=|x+1|+|x+2|=

f(x)<3時(shí),-1≤x<0或-2<x<-1或-3<x≤-2,

f(x)<3的解集為(-3,0).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在公比為q的等比數(shù)列{an}中,已知a1=16,且a1,a2+2,a3成等差數(shù)列.

(Ⅰ)求q,an;

(Ⅱ)若q<1,求滿(mǎn)足a1-a2+a3-…+(-1)2n-1a2n>10的最小的正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中的假命題是(  )

A. α,βR,使sin(αβ)sinαsinβ

B. φR,函數(shù)f(x)sin(2xφ)都不是偶函數(shù)

C. x0R,使 (ab,cR且為常數(shù))

D. a>0,函數(shù)f(x)ln2xlnxa有零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某校舉行的航天知識(shí)競(jìng)賽中,參與競(jìng)賽的文科生與理科生人數(shù)之比為13,且成績(jī)分布在[40,100],分?jǐn)?shù)在80以上(80)的同學(xué)獲獎(jiǎng).按文、理科用分層抽樣的方法抽取200人的成績(jī)作為樣本,得到成績(jī)的頻率分布直方圖如圖所示.

(1)a的值,并計(jì)算所抽取樣本的平均值 (同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(2)填寫(xiě)下面的2×2列聯(lián)表,并判斷能否有超過(guò)95%的把握認(rèn)為“獲獎(jiǎng)與學(xué)生的文、理科有關(guān)”?

文科生

理科生

合計(jì)

獲獎(jiǎng)

5

不獲獎(jiǎng)

合計(jì)

200

附表及公式:

P(K2k0)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方體ABCD-A1B1C1D1中,點(diǎn)E是A1D1的中點(diǎn),點(diǎn)F是CE的中點(diǎn).

(Ⅰ)求證:平面ACE⊥平面BDD1B1;

(Ⅱ)求證:AE∥平面BDF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】共享單車(chē)是指企業(yè)的校園,地鐵站點(diǎn)、公交站點(diǎn)、居民區(qū)、商業(yè)區(qū)、公共服務(wù)區(qū)等提供自行車(chē)單車(chē)共享服務(wù),是一種分時(shí)租賃模式,某共享單車(chē)企業(yè)為更好服務(wù)社會(huì),隨機(jī)調(diào)查了100人,統(tǒng)計(jì)了這100人每日平均騎行共享單車(chē)的時(shí)間(單位:分鐘),由統(tǒng)計(jì)數(shù)據(jù)得到如下頻率分布直方圖,已知騎行時(shí)間在三組對(duì)應(yīng)的人數(shù)依次成等差數(shù)列

(1)求頻率分布直方圖中的值.

(2)若將日平均騎行時(shí)間不少于80分鐘的用戶(hù)定義為“忠實(shí)用戶(hù)”,將日平均騎行時(shí)間少于40分鐘的用戶(hù)為“潛力用戶(hù)”,現(xiàn)從上述“忠實(shí)用戶(hù)”與“潛力用戶(hù)”的人中按分層抽樣選出5人,再?gòu)倪@5人中任取3人,求恰好1人為“忠實(shí)用戶(hù)”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是菱形,PD⊥平面ABCD,PD=AD=3,PM=2MD,AN=2NB,DAB=60°.

(1)求證:直線AM∥平面PNC;

(2)求二面角D﹣PC﹣N的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一兒童游樂(lè)場(chǎng)擬建造一個(gè)“蛋筒”型游樂(lè)設(shè)施,其軸截面如圖中實(shí)線所示. 是等腰梯形, 米, 的延長(zhǎng)線上, 為銳角). 圓都相切,且其半徑長(zhǎng)為米. 是垂直于的一個(gè)立柱,則當(dāng)的值設(shè)計(jì)為多少時(shí),立柱最矮?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】共享單車(chē)是指企業(yè)的校園,地鐵站點(diǎn)、公交站點(diǎn)、居民區(qū)、商業(yè)區(qū)、公共服務(wù)區(qū)等提供自行車(chē)單車(chē)共享服務(wù),是一種分時(shí)租賃模式,某共享單車(chē)企業(yè)為更好服務(wù)社會(huì),隨機(jī)調(diào)查了100人,統(tǒng)計(jì)了這100人每日平均騎行共享單車(chē)的時(shí)間(單位:分鐘),由統(tǒng)計(jì)數(shù)據(jù)得到如下頻率分布直方圖,已知騎行時(shí)間在三組對(duì)應(yīng)的人數(shù)依次成等差數(shù)列

(1)求頻率分布直方圖中的值.

(2)若將日平均騎行時(shí)間不少于80分鐘的用戶(hù)定義為“忠實(shí)用戶(hù)”,將日平均騎行時(shí)間少于40分鐘的用戶(hù)為“潛力用戶(hù)”,現(xiàn)從上述“忠實(shí)用戶(hù)”與“潛力用戶(hù)”的人中按分層抽樣選出5人,再?gòu)倪@5人中任取3人,求恰好1人為“忠實(shí)用戶(hù)”的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案