【題目】共享單車是指企業(yè)的校園,地鐵站點、公交站點、居民區(qū)、商業(yè)區(qū)、公共服務區(qū)等提供自行車單車共享服務,是一種分時租賃模式,某共享單車企業(yè)為更好服務社會,隨機調查了100人,統(tǒng)計了這100人每日平均騎行共享單車的時間(單位:分鐘),由統(tǒng)計數據得到如下頻率分布直方圖,已知騎行時間在三組對應的人數依次成等差數列
(1)求頻率分布直方圖中的值.
(2)若將日平均騎行時間不少于80分鐘的用戶定義為“忠實用戶”,將日平均騎行時間少于40分鐘的用戶為“潛力用戶”,現(xiàn)從上述“忠實用戶”與“潛力用戶”的人中按分層抽樣選出5人,再從這5人中任取3人,求恰好1人為“忠實用戶”的概率.
科目:高中數學 來源: 題型:
【題目】(導學號:05856290)[選修4-5:不等式選講]
已知函數f(x)=|x-a|+|x-2a|.
(Ⅰ)對任意x∈R,不等式f(x)>1成立,求實數a的取值范圍;
(Ⅱ)當a=-1時,解不等式f(x)<3.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(導學號:05856301)已知函數f(x)=m(x-1)ex+x2(m∈R),其導函數為f′(x),若對任意的x<0,不等式x2+(m+1)x>f′(x)恒成立,則實數m的取值范圍為( )
A. (0,1) B. (-∞,1) C. (-∞,1] D. (1,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(導學號:05856333)
已知橢圓C: (a>b>0)的離心率為,其右焦點為F(c,0),第一象限的點A在橢圓C上,且AF⊥x軸.
(Ⅰ)若橢圓C過點(1,- ),求橢圓C的標準方程;
(Ⅱ)已知直線l:y=x-c與橢圓C交于M,N兩點,且B(4c,yB)為直線l上的點,證明:直線AM,AB,AN的斜率滿足kAB=.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知p:“x0∈(-1,1),x-x0-m=0(m∈R)”是正確的,設實數m的取值集合為M.
(1)求集合M;
(2)設關于x的不等式(x-a)(x+a-2)<0(a∈R)的解集為N,若“x∈M”是“x∈N”的充分條件,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知正方體ABCD-A′B′C′D′的外接球的體積為π,將正方體割去部分后,剩余幾何體的三視圖如圖所示,則剩余幾何體的表面積為( )
A. + B. 3+或+ C. 3+ D. +或2+
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某社區(qū)為了解轄區(qū)住戶中離退休老人每天的平均戶外“活動時間”,從轄區(qū)住戶的離退休老人中隨機抽取了100位老人進行調查,獲得了每人每天的平均戶外“活動時間”(單位:小時),活動時間按照、、…、從少到多分成9組,制成樣本的頻率分布直方圖如圖所示.
(1)求圖中的值;
(2)估計該社區(qū)住戶中離退休老人每天的平均戶外“活動時間”的中位數;
(3)在、這兩組中采用分層抽樣抽取7人,再從這7人中隨機抽取2人,求抽取的兩人恰好都在同一個組的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,圓的參數方程為(為參數, 是大于0的常數).以坐標原點為極點, 軸正半軸為極軸建立極坐標系,圓的極坐標方程為.
(1)求圓的極坐標方程和圓的直角坐標方程;
(2)分別記直線: , 與圓、圓的異于原點的焦點為, ,若圓與圓外切,試求實數的值及線段的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com