【題目】(導學號:05856301)已知函數(shù)f(x)=m(x-1)exx2(m∈R),其導函數(shù)為f′(x),若對任意的x<0,不等式x2+(m+1)x>f′(x)恒成立,則實數(shù)m的取值范圍為(  )

A. (0,1) B. (-∞,1) C. (-∞,1] D. (1,+∞)

【答案】C

【解析】由題意得f(x)mexm(x1)exxmxexx,

所以x2(m1)x>f(x)對任意的x<0恒成立等價于mxexx<x2(m1)x對任意的x<0恒成立

mexxm>0對任意的x<0恒成立.

g(x)mexxm(x<0),g(x)mex1,

m1,g(x)mex1ex1<0,g(x)(,0)上單調(diào)遞減,所以g(x)>g(0)0,符合題意;

m>1,g(x)(,-ln m)上單調(diào)遞減,(ln m,0)上單調(diào)遞增,所以g(x)ming(ln m)<g(0)0,不合題意.

所以實數(shù)m的取值范圍為(1]

故選:C

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中的假命題是(  )

A. α,βR,使sin(αβ)sinαsinβ

B. φR,函數(shù)f(x)sin(2xφ)都不是偶函數(shù)

C. x0R,使 (a,b,cR且為常數(shù))

D. a>0,函數(shù)f(x)ln2xlnxa有零點

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是菱形,PD⊥平面ABCD,PD=AD=3,PM=2MD,AN=2NB,DAB=60°.

(1)求證:直線AM∥平面PNC;

(2)求二面角D﹣PC﹣N的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一兒童游樂場擬建造一個“蛋筒”型游樂設(shè)施,其軸截面如圖中實線所示. 是等腰梯形, 米, 的延長線上, 為銳角). 圓都相切,且其半徑長為米. 是垂直于的一個立柱,則當的值設(shè)計為多少時,立柱最矮?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某廣場中間有一塊邊長為2百米的菱形狀綠化區(qū),其中是半徑為1百米的扇形, 管理部門欲在該地從修建小路:在弧上選一點(異于兩點),過點修建與平行的小路.問:點選擇在何處時,才能使得修建的小路的總長最小?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(導學號:05856310)

已知函數(shù)f(x)=x+ln x(a∈R).

(Ⅰ)當a=2時, 求函數(shù)f(x)的單調(diào)區(qū)間;

(Ⅱ)若關(guān)于x的函數(shù)g(x)=f(x)+ln x+2e(e為自然對數(shù)的底數(shù))有且只有一個零點,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(導學號:05856323)已知在△ABC中,A,B,C所對的邊分別為a,bc,R為△ABC外接圓的半徑,若a=1, sin2Bsin2C-sin2A=sin Asin Bsin C,則R的值為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】共享單車是指企業(yè)的校園,地鐵站點、公交站點、居民區(qū)、商業(yè)區(qū)、公共服務(wù)區(qū)等提供自行車單車共享服務(wù),是一種分時租賃模式,某共享單車企業(yè)為更好服務(wù)社會,隨機調(diào)查了100人,統(tǒng)計了這100人每日平均騎行共享單車的時間(單位:分鐘),由統(tǒng)計數(shù)據(jù)得到如下頻率分布直方圖,已知騎行時間在三組對應(yīng)的人數(shù)依次成等差數(shù)列

(1)求頻率分布直方圖中的值.

(2)若將日平均騎行時間不少于80分鐘的用戶定義為“忠實用戶”,將日平均騎行時間少于40分鐘的用戶為“潛力用戶”,現(xiàn)從上述“忠實用戶”與“潛力用戶”的人中按分層抽樣選出5人,再從這5人中任取3人,求恰好1人為“忠實用戶”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)處取得極大值,則實數(shù)的取值范圍是

A. B. C. D.

查看答案和解析>>

同步練習冊答案