【題目】下列命題中的假命題是( )
A. α,β∈R,使sin(α+β)=sinα+sinβ
B. φ∈R,函數(shù)f(x)=sin(2x+φ)都不是偶函數(shù)
C. x0∈R,使 (a,b,c∈R且為常數(shù))
D. a>0,函數(shù)f(x)=ln2x+lnx-a有零點(diǎn)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
平面直角坐標(biāo)系xOy中,射線l:y=x(x≥0),曲線C1的參數(shù)方程為 (α為參數(shù)),曲線C2的方程為x2+(y-2)2=4;以原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系. 曲線C3的極坐標(biāo)方程為ρ=8sin θ.
(Ⅰ)寫出射線l的極坐標(biāo)方程以及曲線C1的普通方程;
(Ⅱ)已知射線l與C2交于O,M,與C3交于O,N,求|MN|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|3x-1|-2|x|+2.
(Ⅰ)解不等式:f(x)<10;
(Ⅱ)若對任意的實(shí)數(shù)x,f(x)-|x|≤a恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)f(x)的最小值;
(2)已知m∈R,p:關(guān)于x的不等式f(x)≥m2+2m-2對任意x∈R恒成立,q:函數(shù)y=(m2-1)x是增函數(shù),若p正確,q錯誤,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R的函數(shù)是偶函數(shù),且滿足上的解析式為,過點(diǎn)作斜率為k的直線l,若直線l與函數(shù)的圖象至少有4個公共點(diǎn),則實(shí)數(shù)k的取值范圍是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(導(dǎo)學(xué)號:05856266)[選修4-5:不等式選講]
設(shè)函數(shù)f(x)=|2x-1|-|x+2|.
(Ⅰ)解不等式f(x)>0;
(Ⅱ)若x0∈R,使得f+2m2<4m,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線.
(1)求曲線在點(diǎn)P(2,4)處的切線方程;
(2)求曲線過點(diǎn)P(2,4)的切線方程;
(3)求斜率為1的曲線的切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(導(dǎo)學(xué)號:05856290)[選修4-5:不等式選講]
已知函數(shù)f(x)=|x-a|+|x-2a|.
(Ⅰ)對任意x∈R,不等式f(x)>1成立,求實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)a=-1時,解不等式f(x)<3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(導(dǎo)學(xué)號:05856301)已知函數(shù)f(x)=m(x-1)ex+x2(m∈R),其導(dǎo)函數(shù)為f′(x),若對任意的x<0,不等式x2+(m+1)x>f′(x)恒成立,則實(shí)數(shù)m的取值范圍為( )
A. (0,1) B. (-∞,1) C. (-∞,1] D. (1,+∞)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com