(本題滿分12分)已知函數(shù)
(1)當時,求函數(shù)的單調區(qū)間;
(2)若函數(shù)的圖像在點處的切線的傾斜角為,問:在什么范圍取值時,對于任意的,函數(shù)在區(qū)間上總存在極值?
(1)在遞增;在遞減。(2)。
解析試題分析:……………………………2分
(1)當時,
令時,解得,所以在遞增;
令時,解得,所以在遞減!5分
(2)因為,函數(shù)的圖像在點處的切線的傾斜角為,
所以,所以,,……………6分
,
………………………………7分
為開口向上的二次函數(shù),兩根之積為負,
對于任意的,函數(shù)
在區(qū)間上總存在極值,
所以只需,………………………10分
解得 ………………………………12分
考點:導數(shù)的幾何意義;利用導數(shù)研究函數(shù)的單調性;利用導數(shù)研究函數(shù)的極值。
點評:利用導數(shù)研究函數(shù)的單調性,尤其是求函數(shù)的單調區(qū)間時,一定要先求函數(shù)的定義域,
科目:高中數(shù)學 來源: 題型:解答題
本小題滿分12分)設M是由滿足下列條件的函數(shù)f (x)構成的集合:①方程f (x)一x=0有實根;②函數(shù)的導數(shù)滿足0<<1.
(1)若函數(shù)f(x)為集合M中的任意一個元素,證明:方程f(x)一x=0只有一個實根;
(2)判斷函數(shù)是否是集合M中的元素,并說明理由;
(3)設函數(shù)f(x)為集合M中的任意一個元素,對于定義域中任意,
證明:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分12分)已知在處有極值,其圖象在處的切線與直線平行.
(1)求函數(shù)的單調區(qū)間;
(2)若時,恒成立,求實數(shù)的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com