若直線x+y=m與圓x2+y2=m相切,則m的值為(  )
A、0B、1C、2D、0或2
考點:圓的切線方程,直線與圓的位置關(guān)系
專題:計算題,直線與圓
分析:直線與圓相切,則圓心到直線的距離等于半徑,從而可求得m的值.
解答: 解:圓x2+y2=m的圓心即為原點,
則圓心到直線x+y=m的距離,
d=
|m|
2

∵直線x+y=m與圓x2+y2=m相切,
∴d=r.
|m|
2
=
m

m2
2
=m

∵m>0,
∴m=2.
故選C.
點評:本題考查直線與圓相切的性質(zhì),點到直線的距離公式等知識.屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖的程序,若輸出結(jié)果為2,則輸入的實數(shù)x的值是( 。
A、3
B、
1
4
C、4
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)滿足f(x)=f(x+3),如圖表示  該函數(shù)在區(qū)間(-2,1]上的圖象,則f(2011)+f(2012)等于( 。
A、3B、2C、1D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(a,b)是直線x+y=2在第一象限內(nèi)的一個動點,則z=
1
a
+
4
b
的最小值是(  )
A、
7
2
B、4
C、
9
2
D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC,角A、B、C所對應(yīng)的邊分別為a,b,c,且sinA+sinB=cosA+cosB,則△ABC是( 。
A、等腰三角形
B、直角三角形
C、等腰直角三角形
D、等腰或直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)α﹑β為鈍角,且sinα=
5
5
,cosβ=-
3
10
10
,則α+β的值為( 。
A、
4
B、
4
C、
4
D、
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個幾何體的三視圖如圖所示,其中正(主)視圖中△ABC是邊長為2的正三角形,俯視圖的邊界為正六邊形,那么該幾何體的側(cè))視圖的面積為(  )
A、
1
2
B、1
C、
3
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(2x+
π
3
)+1,
(Ⅰ)用“五點法”畫出該函數(shù)在一個周期內(nèi)的簡圖;
(Ⅱ)寫出該函數(shù)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{log2(an-1)}(n∈N*)為等差數(shù)列,a1=3,a3=9,
(1)求數(shù)列{an}的通項公式.
(2)求和Sn=
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an

查看答案和解析>>

同步練習(xí)冊答案