【題目】如圖,在四棱錐中,底面是平行四邊形,平面,是棱上的一點,滿足平面.
(Ⅰ)證明:;
(Ⅱ)設,,若為棱上一點,使得直線與平面所成角的大小為30°,求的值.
科目:高中數(shù)學 來源: 題型:
【題目】已知某班的50名學生進行不記名問卷調(diào)查,內(nèi)容為本周使用手機的時間長,如表:
時間長(小時) | |||||
女生人數(shù) | 4 | 11 | 3 | 2 | 0 |
男生人數(shù) | 3 | 17 | 6 | 3 | 1 |
(1)求這50名學生本周使用手機的平均時間長;
(2)時間長為的7名同學中,從中抽取兩名,求其中恰有一個女生的概率;
(3)若時間長為被認定“不依賴手機”,被認定“依賴手機”,根據(jù)以上數(shù)據(jù)完成列聯(lián)表:
不依賴手機 | 依賴手機 | 總計 | |
女生 | |||
男生 | |||
總計 |
能否在犯錯概率不超過0.15的前提下,認為學生的性別與依賴手機有關系?
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知三個內(nèi)角所對的邊分別是,若.
(1)求角;
(2)若的外接圓半徑為2,求周長的最大值.
【答案】(1) ;(2) .
【解析】試題分析:(1)由正弦定理將邊角關系化為邊的關系,再根據(jù)余弦定理求角,(2)先根據(jù)正弦定理求邊,用角表示周長,根據(jù)兩角和正弦公式以及配角公式化為基本三角函數(shù),最后根據(jù)正弦函數(shù)性質(zhì)求最大值.
試題解析:(1)由正弦定理得,
∴,∴,即
因為,則.
(2)由正弦定理
∴, , ,
∴周長
∵,∴
∴當即時
∴當時, 周長的最大值為.
【題型】解答題
【結(jié)束】
18
【題目】經(jīng)調(diào)查,3個成年人中就有一個高血壓,那么什么是高血壓?血壓多少是正常的?經(jīng)國際衛(wèi)生組織對大量不同年齡的人群進行血壓調(diào)查,得出隨年齡變化,收縮壓的正常值變化情況如下表:
其中: , ,
(1)請畫出上表數(shù)據(jù)的散點圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關于的線性回歸方程;(的值精確到0.01)
(3)若規(guī)定,一個人的收縮壓為標準值的0.9~1.06倍,則為血壓正常人群;收縮壓為標準值的1.06~1.12倍,則為輕度高血壓人群;收縮壓為標準值的1.12~1.20倍,則為中度高血壓人群;收縮壓為標準值的1.20倍及以上,則為高度高血壓人群.一位收縮壓為180mmHg的70歲的老人,屬于哪類人群?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將一顆均勻的骰子擲兩次,第一次得到的點數(shù)記為,第一次得到的點數(shù)記為,則方程組有唯一解的概率是___________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面是邊長為2的菱形,,,平面平面,點為棱的中點.
(Ⅰ)在棱上是否存在一點,使得平面,并說明理由;
(Ⅱ)當二面角的余弦值為時,求直線與平面所成的角.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,已知平面四邊形中,.點在上,且滿足.沿將折起,使得平面平面,如圖2.
(1)若點是的中點,證明:平面;
(2)在(1)的條件下,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,短軸長為4.
(1)求橢圓C的標準方程.
(2)設直線l過點(2,0)且與橢圓C相交于不同的兩點A、B,直線與x軸交于點D,E是直線上異于D的任意一點,當時,直線BE是否恒過x軸上的定點?若過,求出定點坐標,若不過,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com