已知變量x,y滿足約束條件
x+2y≥0
x-y≥0
0≤x≤3
,則z=x+y的最大值為( 。
A、3B、4C、5D、6
考點:簡單線性規(guī)劃
專題:數(shù)形結(jié)合
分析:由約束條件作出可行域,結(jié)合圖形得到使目標(biāo)函數(shù)z=x+y的最優(yōu)解,代入坐標(biāo)求得z=x+y的最小值.
解答: 解:由約束條件
x+2y≥0
x-y≥0
0≤x≤3
作出可行域如圖,

聯(lián)立
x-y=0
x=3
,解得
x=3
y=3

∴B(3,3).
由圖可知,使目標(biāo)函數(shù)z=x+y取得最大值最大值的最優(yōu)解為點B的坐標(biāo),
∴z=x+y的最大值為3+3=6.
故選:D.
點評:本題考查了簡單的線性規(guī)劃,體現(xiàn)了數(shù)形結(jié)合的解題思想方法,解答的關(guān)鍵是正確作出可行域,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)的導(dǎo)函數(shù)f′(x)=1-cosx,x∈(-1,1).滿足f(1-x2)+f(1-x)<0,則實數(shù)x的取值范圍是( 。
A、(0,1)
B、(1,
2
C、(-2,-
2
D、(-
2
,1)∪(1,
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實數(shù)x,y滿足0<x≤2,0<y≤2,且使關(guān)于t的方程t2+2xt+y=0與t2+2yt+x=0均有實數(shù)根,則2x+y有( 。
A、最小值2
B、最小值3
C、最大值2+2
2
D、最大值4+
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合A={x|1<x<3},B={x|x≤2},則A∩B=( 。
A、{x|x<3}
B、{x|2≤x<3}
C、{x|1<x≤2}
D、{x|1<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實數(shù)x,y滿足約束條件
2x+y≥4
x-y≥1
x-2y≤2
,目標(biāo)函數(shù)z=tx+y有最小值6,則t的值可以為( 。
A、3B、-3C、1D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文)若sin2α=
1
3
,則cos2(α+
π
4
)=( 。
A、
2
3
B、
1
2
C、
1
3
D、
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i為虛數(shù)單位,復(fù)數(shù)z=1+i,z為其共軛復(fù)數(shù),則
z2-2z
z
等于(  )
A、-1-iB、1-i
C、-1+iD、1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-3ax+2a,(a∈R).
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)曲線y=f(x)與x軸有且只有一個公共點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y滿足
y-2≤0
x+3≥0
x-y-1≤0
y-2
x-4
的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案